IDNLearn.com: Your trusted platform for finding reliable answers. Ask anything and get well-informed, reliable answers from our knowledgeable community members.
Sagot :
To find an exponential function that grows at a faster rate than the quadratic function [tex]\( y = 3x^2 \)[/tex] within the interval [tex]\( 0 < x < 3 \)[/tex], we'll compare the values of both functions at specific points within the interval.
First, let's evaluate the quadratic function [tex]\( y = 3x^2 \)[/tex] at [tex]\( x = 0, 1, 2, \)[/tex] and [tex]\( 3 \)[/tex].
For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 3(0)^2 = 0 \][/tex]
For [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 3(1)^2 = 3 \][/tex]
For [tex]\( x = 2 \)[/tex]:
[tex]\[ y = 3(2)^2 = 12 \][/tex]
For [tex]\( x = 3 \)[/tex]:
[tex]\[ y = 3(3)^2 = 27 \][/tex]
So, the quadratic values at [tex]\( x = 0, 1, 2, \)[/tex] and [tex]\( 3 \)[/tex] are [tex]\( 0, 3, 12, \)[/tex] and [tex]\( 27 \)[/tex] respectively.
Now, let's evaluate the exponential function [tex]\( y = e^x \)[/tex] at the same points.
For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = e^0 = 1.0 \][/tex]
For [tex]\( x = 1 \)[/tex]:
[tex]\[ y = e^1 \approx 2.718 \][/tex]
For [tex]\( x = 2 \)[/tex]:
[tex]\[ y = e^2 \approx 7.389 \][/tex]
For [tex]\( x = 3 \)[/tex]:
[tex]\[ y = e^3 \approx 20.086 \][/tex]
So, the exponential values at [tex]\( x = 0, 1, 2, \, \text{and} \, 3 \)[/tex] are approximately [tex]\( 1.0, 2.718, 7.389, \, \text{and} \, 20.086 \)[/tex] respectively.
Comparing the values of the quadratic function [tex]\( y = 3x^2 \)[/tex] and the exponential function [tex]\( y = e^x \)[/tex] for [tex]\( x \)[/tex] in the interval [tex]\( 0 < x < 3 \)[/tex]:
- At [tex]\( x = 1 \)[/tex]:
- Quadratic: [tex]\( 3 \)[/tex]
- Exponential: [tex]\( \approx 2.718 \)[/tex]
The quadratic is slightly higher.
- At [tex]\( x = 2 \)[/tex]:
- Quadratic: [tex]\( 12 \)[/tex]
- Exponential: [tex]\( \approx 7.389 \)[/tex]
The quadratic is higher.
- At [tex]\( x = 3 \)[/tex]:
- Quadratic: [tex]\( 27 \)[/tex]
- Exponential: [tex]\( \approx 20.086 \)[/tex]
The quadratic is still higher, but the exponential is catching up.
Looking closely, we can see that for [tex]\( x < 3 \)[/tex], the exponential values start lower but approach the quadratic values. Exponential functions generally have the property of surpassing polynomial functions beyond a certain point because their growth rate is faster.
Thus, the exponential function [tex]\( y = e^x \)[/tex] grows at a faster rate than the quadratic function [tex]\( y = 3x^2 \)[/tex] starting slightly after [tex]\( x = 3 \)[/tex], hence it is a candidate function which will surpass the quadratic growth slightly beyond [tex]\( x = 3 \)[/tex]. For [tex]\( x \)[/tex] between 0 and 3, while the quadratic may still be slightly higher, the exponential function [tex]\( y = e^x \)[/tex] is definitely on the verge of growing faster and surpassing it.
First, let's evaluate the quadratic function [tex]\( y = 3x^2 \)[/tex] at [tex]\( x = 0, 1, 2, \)[/tex] and [tex]\( 3 \)[/tex].
For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 3(0)^2 = 0 \][/tex]
For [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 3(1)^2 = 3 \][/tex]
For [tex]\( x = 2 \)[/tex]:
[tex]\[ y = 3(2)^2 = 12 \][/tex]
For [tex]\( x = 3 \)[/tex]:
[tex]\[ y = 3(3)^2 = 27 \][/tex]
So, the quadratic values at [tex]\( x = 0, 1, 2, \)[/tex] and [tex]\( 3 \)[/tex] are [tex]\( 0, 3, 12, \)[/tex] and [tex]\( 27 \)[/tex] respectively.
Now, let's evaluate the exponential function [tex]\( y = e^x \)[/tex] at the same points.
For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = e^0 = 1.0 \][/tex]
For [tex]\( x = 1 \)[/tex]:
[tex]\[ y = e^1 \approx 2.718 \][/tex]
For [tex]\( x = 2 \)[/tex]:
[tex]\[ y = e^2 \approx 7.389 \][/tex]
For [tex]\( x = 3 \)[/tex]:
[tex]\[ y = e^3 \approx 20.086 \][/tex]
So, the exponential values at [tex]\( x = 0, 1, 2, \, \text{and} \, 3 \)[/tex] are approximately [tex]\( 1.0, 2.718, 7.389, \, \text{and} \, 20.086 \)[/tex] respectively.
Comparing the values of the quadratic function [tex]\( y = 3x^2 \)[/tex] and the exponential function [tex]\( y = e^x \)[/tex] for [tex]\( x \)[/tex] in the interval [tex]\( 0 < x < 3 \)[/tex]:
- At [tex]\( x = 1 \)[/tex]:
- Quadratic: [tex]\( 3 \)[/tex]
- Exponential: [tex]\( \approx 2.718 \)[/tex]
The quadratic is slightly higher.
- At [tex]\( x = 2 \)[/tex]:
- Quadratic: [tex]\( 12 \)[/tex]
- Exponential: [tex]\( \approx 7.389 \)[/tex]
The quadratic is higher.
- At [tex]\( x = 3 \)[/tex]:
- Quadratic: [tex]\( 27 \)[/tex]
- Exponential: [tex]\( \approx 20.086 \)[/tex]
The quadratic is still higher, but the exponential is catching up.
Looking closely, we can see that for [tex]\( x < 3 \)[/tex], the exponential values start lower but approach the quadratic values. Exponential functions generally have the property of surpassing polynomial functions beyond a certain point because their growth rate is faster.
Thus, the exponential function [tex]\( y = e^x \)[/tex] grows at a faster rate than the quadratic function [tex]\( y = 3x^2 \)[/tex] starting slightly after [tex]\( x = 3 \)[/tex], hence it is a candidate function which will surpass the quadratic growth slightly beyond [tex]\( x = 3 \)[/tex]. For [tex]\( x \)[/tex] between 0 and 3, while the quadratic may still be slightly higher, the exponential function [tex]\( y = e^x \)[/tex] is definitely on the verge of growing faster and surpassing it.
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. For clear and precise answers, choose IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.