Get the answers you've been looking for with the help of IDNLearn.com's expert community. Discover comprehensive answers from knowledgeable members of our community, covering a wide range of topics to meet all your informational needs.
Sagot :
To determine the range of possible values of [tex]\( k \)[/tex] such that the quadratic equation [tex]\( k x^2 + 6 k x + 5 = 0 \)[/tex] has no real roots, we need to use the discriminant of the quadratic equation. For a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex], the discriminant [tex]\(\Delta\)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
For the equation [tex]\( k x^2 + 6 k x + 5 = 0 \)[/tex]:
- [tex]\( a = k \)[/tex]
- [tex]\( b = 6k \)[/tex]
- [tex]\( c = 5 \)[/tex]
The discriminant [tex]\(\Delta\)[/tex] for this quadratic equation is:
[tex]\[ \Delta = (6k)^2 - 4(k)(5) \][/tex]
Simplifying the discriminant:
[tex]\[ \Delta = 36k^2 - 20k \][/tex]
For the quadratic equation to have no real roots, the discriminant must be less than zero:
[tex]\[ \Delta < 0 \implies 36k^2 - 20k < 0 \][/tex]
To solve this inequality, we first factor the quadratic expression:
[tex]\[ 36k^2 - 20k = 4k(9k - 5) \][/tex]
So, the inequality becomes:
[tex]\[ 4k(9k - 5) < 0 \][/tex]
We need to determine the values of [tex]\( k \)[/tex] for which this product is negative. We start by finding the roots of the equation [tex]\( 4k(9k - 5) = 0 \)[/tex]:
[tex]\[ 4k = 0 \quad \text{or} \quad 9k - 5 = 0 \][/tex]
Solving these, we get:
[tex]\[ k = 0 \quad \text{or} \quad k = \frac{5}{9} \][/tex]
Since [tex]\( k \neq 0 \)[/tex] (as given in the problem), we discard [tex]\( k = 0 \)[/tex], leaving [tex]\( k = \frac{5}{9} \)[/tex].
Next, we analyze the sign of the expression [tex]\( 4k(9k - 5) \)[/tex] around the root [tex]\( k = \frac{5}{9} \)[/tex]. To do this, we test the intervals divided by [tex]\( k = \frac{5}{9} \)[/tex]:
1. Interval [tex]\( (-\infty, \frac{5}{9}) \)[/tex]: Choose [tex]\( k = 0 \)[/tex] (as in this interval but [tex]\( k \neq 0 \)[/tex]).
[tex]\[ 4 \cdot 0 \cdot (9 \cdot 0 - 5) = -0 < 0 \quad \text{(negative)} \][/tex]
2. Interval [tex]\( (\frac{5}{9}, \infty) \)[/tex]: Choose [tex]\( k = 1 \)[/tex] (as in this interval).
[tex]\[ 4 \cdot 1 \cdot (9 \cdot 1 - 5) = 4 \cdot 1 \cdot 4 = 16 > 0 \quad \text{(positive)} \][/tex]
Since [tex]\( 4k(9k - 5) < 0 \)[/tex] in the interval [tex]\( (-\infty, \frac{5}{9}) \)[/tex], and [tex]\( k \neq 0 \)[/tex], the range of possible values of [tex]\( k \)[/tex] for which the quadratic equation has no real roots is:
[tex]\[ \boxed{0 < k < \frac{5}{9}} \][/tex]
[tex]\[ \Delta = b^2 - 4ac \][/tex]
For the equation [tex]\( k x^2 + 6 k x + 5 = 0 \)[/tex]:
- [tex]\( a = k \)[/tex]
- [tex]\( b = 6k \)[/tex]
- [tex]\( c = 5 \)[/tex]
The discriminant [tex]\(\Delta\)[/tex] for this quadratic equation is:
[tex]\[ \Delta = (6k)^2 - 4(k)(5) \][/tex]
Simplifying the discriminant:
[tex]\[ \Delta = 36k^2 - 20k \][/tex]
For the quadratic equation to have no real roots, the discriminant must be less than zero:
[tex]\[ \Delta < 0 \implies 36k^2 - 20k < 0 \][/tex]
To solve this inequality, we first factor the quadratic expression:
[tex]\[ 36k^2 - 20k = 4k(9k - 5) \][/tex]
So, the inequality becomes:
[tex]\[ 4k(9k - 5) < 0 \][/tex]
We need to determine the values of [tex]\( k \)[/tex] for which this product is negative. We start by finding the roots of the equation [tex]\( 4k(9k - 5) = 0 \)[/tex]:
[tex]\[ 4k = 0 \quad \text{or} \quad 9k - 5 = 0 \][/tex]
Solving these, we get:
[tex]\[ k = 0 \quad \text{or} \quad k = \frac{5}{9} \][/tex]
Since [tex]\( k \neq 0 \)[/tex] (as given in the problem), we discard [tex]\( k = 0 \)[/tex], leaving [tex]\( k = \frac{5}{9} \)[/tex].
Next, we analyze the sign of the expression [tex]\( 4k(9k - 5) \)[/tex] around the root [tex]\( k = \frac{5}{9} \)[/tex]. To do this, we test the intervals divided by [tex]\( k = \frac{5}{9} \)[/tex]:
1. Interval [tex]\( (-\infty, \frac{5}{9}) \)[/tex]: Choose [tex]\( k = 0 \)[/tex] (as in this interval but [tex]\( k \neq 0 \)[/tex]).
[tex]\[ 4 \cdot 0 \cdot (9 \cdot 0 - 5) = -0 < 0 \quad \text{(negative)} \][/tex]
2. Interval [tex]\( (\frac{5}{9}, \infty) \)[/tex]: Choose [tex]\( k = 1 \)[/tex] (as in this interval).
[tex]\[ 4 \cdot 1 \cdot (9 \cdot 1 - 5) = 4 \cdot 1 \cdot 4 = 16 > 0 \quad \text{(positive)} \][/tex]
Since [tex]\( 4k(9k - 5) < 0 \)[/tex] in the interval [tex]\( (-\infty, \frac{5}{9}) \)[/tex], and [tex]\( k \neq 0 \)[/tex], the range of possible values of [tex]\( k \)[/tex] for which the quadratic equation has no real roots is:
[tex]\[ \boxed{0 < k < \frac{5}{9}} \][/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Discover the answers you need at IDNLearn.com. Thanks for visiting, and come back soon for more valuable insights.