Experience the convenience of getting your questions answered at IDNLearn.com. Receive prompt and accurate responses to your questions from our community of knowledgeable professionals ready to assist you at any time.
Sagot :
Alright, let's break down the problem and solve it step-by-step.
### Given:
- Mass of the ball ([tex]\( m \)[/tex]) = 0.1 kg (converted from 0.1tg)
- Initial velocity ([tex]\( u \)[/tex]) = 80 m/s
- Acceleration due to gravity ([tex]\( g \)[/tex]) = 9.8 m/s²
### 1. Calculate the Maximum Height
The kinematic equation we will use is:
[tex]\[ v^2 = u^2 - 2gh \][/tex]
Where:
- [tex]\( v \)[/tex] = final velocity (0 m/s at maximum height)
- [tex]\( h \)[/tex] = maximum height
Rearranging for [tex]\( h \)[/tex]:
[tex]\[ h = \frac{u^2}{2g} \][/tex]
### 2. Calculate the Potential Energy at Half the Maximum Height
First, we find the maximum height [tex]\( h \)[/tex]:
[tex]\[ h = \frac{(80 \, \text{m/s})^2}{2 \times 9.8 \, \text{m/s}^2} \][/tex]
[tex]\[ h = \frac{6400}{19.6} \][/tex]
[tex]\[ h = 326.53 \, \text{m} \][/tex]
Now, the half of the maximum height [tex]\( h/2 \)[/tex] is:
[tex]\[ \frac{h}{2} = \frac{326.53 \, \text{m}}{2} \][/tex]
[tex]\[ \frac{h}{2} = 163.26 \, \text{m} \][/tex]
The potential energy at half the height is:
[tex]\[ PE_{\text{halfway}} = mgh_{\text{half}} \][/tex]
[tex]\[ PE_{\text{halfway}} = 0.1 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 163.26 \, \text{m} \][/tex]
[tex]\[ PE_{\text{halfway}} = 159.99 \, \text{J} \][/tex]
Approximately, [tex]\( 160 \, \text{J} \)[/tex].
### 3. Calculate the Potential Energy at Its Maximum Height
The potential energy at maximum height is:
[tex]\[ PE_{\text{max}} = mgh \][/tex]
[tex]\[ PE_{\text{max}} = 0.1 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 326.53 \, \text{m} \][/tex]
[tex]\[ PE_{\text{max}} = 319.99 \, \text{J} \][/tex]
Approximately, [tex]\( 320 \, \text{J} \)[/tex].
### 4. Calculate the Kinetic Energy as it Leaves the Ground
The kinetic energy as it leaves the ground is given by the formula:
[tex]\[ KE = \frac{1}{2} mv^2 \][/tex]
Substituting the given values:
[tex]\[ KE = \frac{1}{2} \times 0.1 \, \text{kg} \times (80 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = 0.05 \times 6400 \][/tex]
[tex]\[ KE = 320 \, \text{J} \][/tex]
### Summary
1. Potential Energy halfway up: [tex]\( 160 \, \text{J} \)[/tex]
2. Potential Energy at maximum height: [tex]\( 320 \, \text{J} \)[/tex]
3. Kinetic Energy as it leaves the ground: [tex]\( 320 \, \text{J} \)[/tex]
These are the detailed calculations and the results for each part of the problem.
### Given:
- Mass of the ball ([tex]\( m \)[/tex]) = 0.1 kg (converted from 0.1tg)
- Initial velocity ([tex]\( u \)[/tex]) = 80 m/s
- Acceleration due to gravity ([tex]\( g \)[/tex]) = 9.8 m/s²
### 1. Calculate the Maximum Height
The kinematic equation we will use is:
[tex]\[ v^2 = u^2 - 2gh \][/tex]
Where:
- [tex]\( v \)[/tex] = final velocity (0 m/s at maximum height)
- [tex]\( h \)[/tex] = maximum height
Rearranging for [tex]\( h \)[/tex]:
[tex]\[ h = \frac{u^2}{2g} \][/tex]
### 2. Calculate the Potential Energy at Half the Maximum Height
First, we find the maximum height [tex]\( h \)[/tex]:
[tex]\[ h = \frac{(80 \, \text{m/s})^2}{2 \times 9.8 \, \text{m/s}^2} \][/tex]
[tex]\[ h = \frac{6400}{19.6} \][/tex]
[tex]\[ h = 326.53 \, \text{m} \][/tex]
Now, the half of the maximum height [tex]\( h/2 \)[/tex] is:
[tex]\[ \frac{h}{2} = \frac{326.53 \, \text{m}}{2} \][/tex]
[tex]\[ \frac{h}{2} = 163.26 \, \text{m} \][/tex]
The potential energy at half the height is:
[tex]\[ PE_{\text{halfway}} = mgh_{\text{half}} \][/tex]
[tex]\[ PE_{\text{halfway}} = 0.1 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 163.26 \, \text{m} \][/tex]
[tex]\[ PE_{\text{halfway}} = 159.99 \, \text{J} \][/tex]
Approximately, [tex]\( 160 \, \text{J} \)[/tex].
### 3. Calculate the Potential Energy at Its Maximum Height
The potential energy at maximum height is:
[tex]\[ PE_{\text{max}} = mgh \][/tex]
[tex]\[ PE_{\text{max}} = 0.1 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 326.53 \, \text{m} \][/tex]
[tex]\[ PE_{\text{max}} = 319.99 \, \text{J} \][/tex]
Approximately, [tex]\( 320 \, \text{J} \)[/tex].
### 4. Calculate the Kinetic Energy as it Leaves the Ground
The kinetic energy as it leaves the ground is given by the formula:
[tex]\[ KE = \frac{1}{2} mv^2 \][/tex]
Substituting the given values:
[tex]\[ KE = \frac{1}{2} \times 0.1 \, \text{kg} \times (80 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = 0.05 \times 6400 \][/tex]
[tex]\[ KE = 320 \, \text{J} \][/tex]
### Summary
1. Potential Energy halfway up: [tex]\( 160 \, \text{J} \)[/tex]
2. Potential Energy at maximum height: [tex]\( 320 \, \text{J} \)[/tex]
3. Kinetic Energy as it leaves the ground: [tex]\( 320 \, \text{J} \)[/tex]
These are the detailed calculations and the results for each part of the problem.
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.