IDNLearn.com: Your trusted platform for finding precise and reliable answers. Discover in-depth and reliable answers to all your questions from our knowledgeable community members who are always ready to assist.
Sagot :
Sure! Let's find the energy of photons given the wavelengths for red and blue light.
1. Constants and Given Values:
- Planck's constant [tex]\( h = 6.626 \times 10^{-34} \)[/tex] Joule seconds (J·s)
- Speed of light [tex]\( c = 3.0 \times 10^8 \)[/tex] meters per second (m/s)
- Conversion factor [tex]\( 1 \)[/tex] electron-volt [tex]\( (eV) = 1.60 \times 10^{-19} \)[/tex] Joules (J)
- Wavelength of red light [tex]\( \lambda_{\text{red}} = 600 \)[/tex] nanometers (nm) [tex]\( = 600 \times 10^{-9} \)[/tex] meters (m)
- Wavelength of blue light [tex]\( \lambda_{\text{blue}} = 400 \)[/tex] nanometers (nm) [tex]\( = 400 \times 10^{-9} \)[/tex] meters (m)
2. Energy of a Photon:
The energy [tex]\( E \)[/tex] of a photon can be calculated using the formula:
[tex]\[ E = \frac{h \cdot c}{\lambda} \][/tex]
3. Calculating the Energy of a Red Photon:
Substituting the values:
[tex]\[ E_{\text{red}} = \frac{6.626 \times 10^{-34} \, \text{J·s} \times 3.0 \times 10^8 \, \text{m/s}}{600 \times 10^{-9} \, \text{m}} \][/tex]
This calculation gives:
[tex]\[ E_{\text{red}} = 3.313 \times 10^{-19} \, \text{J} \][/tex]
4. Converting Energy of a Red Photon to Electron-Volts:
[tex]\[ E_{\text{red}} (\text{eV}) = \frac{E_{\text{red}} (\text{J})}{1.60 \times 10^{-19} \, \text{J/eV}} \][/tex]
So,
[tex]\[ E_{\text{red}} (\text{eV}) = \frac{3.313 \times 10^{-19} \, \text{J}}{1.60 \times 10^{-19} \, \text{J/eV}} = 2.070625 \, \text{eV} \][/tex]
5. Calculating the Energy of a Blue Photon:
Substituting the values:
[tex]\[ E_{\text{blue}} = \frac{6.626 \times 10^{-34} \, \text{J·s} \times 3.0 \times 10^8 \, \text{m/s}}{400 \times 10^{-9} \, \text{m}} \][/tex]
This calculation gives:
[tex]\[ E_{\text{blue}} = 4.9695 \times 10^{-19} \, \text{J} \][/tex]
6. Converting Energy of a Blue Photon to Electron-Volts:
[tex]\[ E_{\text{blue}} (\text{eV}) = \frac{E_{\text{blue}} (\text{J})}{1.60 \times 10^{-19} \, \text{J/eV}} \][/tex]
So,
[tex]\[ E_{\text{blue}} (\text{eV}) = \frac{4.9695 \times 10^{-19} \, \text{J}}{1.60 \times 10^{-19} \, \text{J/eV}} = 3.1059375 \, \text{eV} \][/tex]
To summarize:
- The energy of a red photon (600 nm) is:
- [tex]\( 3.313 \times 10^{-19} \, \text{J} \)[/tex]
- [tex]\( 2.070625 \, \text{eV} \)[/tex]
- The energy of a blue photon (400 nm) is:
- [tex]\( 4.9695 \times 10^{-19} \, \text{J} \)[/tex]
- [tex]\( 3.1059375 \, \text{eV} \)[/tex]
1. Constants and Given Values:
- Planck's constant [tex]\( h = 6.626 \times 10^{-34} \)[/tex] Joule seconds (J·s)
- Speed of light [tex]\( c = 3.0 \times 10^8 \)[/tex] meters per second (m/s)
- Conversion factor [tex]\( 1 \)[/tex] electron-volt [tex]\( (eV) = 1.60 \times 10^{-19} \)[/tex] Joules (J)
- Wavelength of red light [tex]\( \lambda_{\text{red}} = 600 \)[/tex] nanometers (nm) [tex]\( = 600 \times 10^{-9} \)[/tex] meters (m)
- Wavelength of blue light [tex]\( \lambda_{\text{blue}} = 400 \)[/tex] nanometers (nm) [tex]\( = 400 \times 10^{-9} \)[/tex] meters (m)
2. Energy of a Photon:
The energy [tex]\( E \)[/tex] of a photon can be calculated using the formula:
[tex]\[ E = \frac{h \cdot c}{\lambda} \][/tex]
3. Calculating the Energy of a Red Photon:
Substituting the values:
[tex]\[ E_{\text{red}} = \frac{6.626 \times 10^{-34} \, \text{J·s} \times 3.0 \times 10^8 \, \text{m/s}}{600 \times 10^{-9} \, \text{m}} \][/tex]
This calculation gives:
[tex]\[ E_{\text{red}} = 3.313 \times 10^{-19} \, \text{J} \][/tex]
4. Converting Energy of a Red Photon to Electron-Volts:
[tex]\[ E_{\text{red}} (\text{eV}) = \frac{E_{\text{red}} (\text{J})}{1.60 \times 10^{-19} \, \text{J/eV}} \][/tex]
So,
[tex]\[ E_{\text{red}} (\text{eV}) = \frac{3.313 \times 10^{-19} \, \text{J}}{1.60 \times 10^{-19} \, \text{J/eV}} = 2.070625 \, \text{eV} \][/tex]
5. Calculating the Energy of a Blue Photon:
Substituting the values:
[tex]\[ E_{\text{blue}} = \frac{6.626 \times 10^{-34} \, \text{J·s} \times 3.0 \times 10^8 \, \text{m/s}}{400 \times 10^{-9} \, \text{m}} \][/tex]
This calculation gives:
[tex]\[ E_{\text{blue}} = 4.9695 \times 10^{-19} \, \text{J} \][/tex]
6. Converting Energy of a Blue Photon to Electron-Volts:
[tex]\[ E_{\text{blue}} (\text{eV}) = \frac{E_{\text{blue}} (\text{J})}{1.60 \times 10^{-19} \, \text{J/eV}} \][/tex]
So,
[tex]\[ E_{\text{blue}} (\text{eV}) = \frac{4.9695 \times 10^{-19} \, \text{J}}{1.60 \times 10^{-19} \, \text{J/eV}} = 3.1059375 \, \text{eV} \][/tex]
To summarize:
- The energy of a red photon (600 nm) is:
- [tex]\( 3.313 \times 10^{-19} \, \text{J} \)[/tex]
- [tex]\( 2.070625 \, \text{eV} \)[/tex]
- The energy of a blue photon (400 nm) is:
- [tex]\( 4.9695 \times 10^{-19} \, \text{J} \)[/tex]
- [tex]\( 3.1059375 \, \text{eV} \)[/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com is committed to your satisfaction. Thank you for visiting, and see you next time for more helpful answers.