Find solutions to your questions with the help of IDNLearn.com's expert community. Join our platform to receive prompt and accurate responses from experienced professionals in various fields.
Sagot :
To determine the graph of the function [tex]\( f(x) = 3\left(\frac{2}{3}\right)^x \)[/tex], let's analyze the behavior of the function and calculate a few key points:
1. Intercepts:
- y-intercept: The y-intercept occurs when [tex]\( x = 0 \)[/tex].
[tex]\[ f(0) = 3 \left( \frac{2}{3} \right)^0 = 3 \cdot 1 = 3 \][/tex]
So, the y-intercept is at [tex]\( (0, 3) \)[/tex].
- x-intercept: To find the x-intercept, we set [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ 3\left(\frac{2}{3}\right)^x = 0 \][/tex]
However, since [tex]\( 3\left(\frac{2}{3}\right)^x \)[/tex] never actually equals zero for any real value of [tex]\( x \)[/tex], there is no x-intercept.
2. Behavior as [tex]\( x \to \infty \)[/tex] and [tex]\( x \to -\infty \)[/tex]:
- As [tex]\( x \)[/tex] increases ([tex]\( x \to \infty \)[/tex]), [tex]\( \left(\frac{2}{3}\right)^x \to 0 \)[/tex], hence [tex]\( f(x) \to 0 \)[/tex].
- As [tex]\( x \)[/tex] decreases ([tex]\( x \to -\infty \)[/tex]), [tex]\( \left(\frac{2}{3}\right)^x \)[/tex] grows exponentially because the base [tex]\( \frac{2}{3} < 1 \)[/tex]. Consequently, [tex]\( f(x) \to \infty \)[/tex].
3. Key values to plot:
Let's find some values around [tex]\( x = 0 \)[/tex] to get a sense for how the function behaves for other points:
- For [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = 3\left(\frac{2}{3}\right)^{-1} = 3 \cdot \frac{3}{2} = 4.5 \][/tex]
- For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 3\left(\frac{2}{3}\right) = 3 \cdot \frac{2}{3} = 2 \][/tex]
- For [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 3\left(\frac{2}{3}\right)^2 = 3 \cdot \left(\frac{4}{9}\right) = \frac{12}{9} = \frac{4}{3} \approx 1.33 \][/tex]
- For [tex]\( x = -2 \)[/tex]:
[tex]\[ f(-2) = 3\left(\frac{2}{3}\right)^{-2} = 3 \cdot \left(\frac{3}{2}\right)^2 = 3 \cdot \frac{9}{4} = 6.75 \][/tex]
4. A sample of points:
Here are some approximate points describing the function behavior close to the input:
[tex]\[ \begin{aligned} (-10, 172.99), & \quad (-9.95, 169.51), \quad (-9.90, 166.10), \\ (-9.85, 162.76), & \quad (-9.80, 159.49), \quad (-9.75, 156.28), \\ (-9.70, 153.13), & \quad (-9.65, 150.05), \quad (-9.60, 147.03), \\ (-9.55, 144.08). \end{aligned} \][/tex]
Given the points we have calculated and the behavior described, we can draw the graph of [tex]\( f(x) = 3\left(\frac{2}{3}\right)^x \)[/tex]:
- The function will decay towards 0 as [tex]\( x \to \infty \)[/tex].
- The function will escalate to large values as [tex]\( x \to -\infty \)[/tex].
- The y-intercept is at [tex]\( (0, 3) \)[/tex].
The general shape of the graph will show exponential decay towards the positive x-axis with a rapid increase when moving towards the negative x-axis.
1. Intercepts:
- y-intercept: The y-intercept occurs when [tex]\( x = 0 \)[/tex].
[tex]\[ f(0) = 3 \left( \frac{2}{3} \right)^0 = 3 \cdot 1 = 3 \][/tex]
So, the y-intercept is at [tex]\( (0, 3) \)[/tex].
- x-intercept: To find the x-intercept, we set [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ 3\left(\frac{2}{3}\right)^x = 0 \][/tex]
However, since [tex]\( 3\left(\frac{2}{3}\right)^x \)[/tex] never actually equals zero for any real value of [tex]\( x \)[/tex], there is no x-intercept.
2. Behavior as [tex]\( x \to \infty \)[/tex] and [tex]\( x \to -\infty \)[/tex]:
- As [tex]\( x \)[/tex] increases ([tex]\( x \to \infty \)[/tex]), [tex]\( \left(\frac{2}{3}\right)^x \to 0 \)[/tex], hence [tex]\( f(x) \to 0 \)[/tex].
- As [tex]\( x \)[/tex] decreases ([tex]\( x \to -\infty \)[/tex]), [tex]\( \left(\frac{2}{3}\right)^x \)[/tex] grows exponentially because the base [tex]\( \frac{2}{3} < 1 \)[/tex]. Consequently, [tex]\( f(x) \to \infty \)[/tex].
3. Key values to plot:
Let's find some values around [tex]\( x = 0 \)[/tex] to get a sense for how the function behaves for other points:
- For [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = 3\left(\frac{2}{3}\right)^{-1} = 3 \cdot \frac{3}{2} = 4.5 \][/tex]
- For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 3\left(\frac{2}{3}\right) = 3 \cdot \frac{2}{3} = 2 \][/tex]
- For [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 3\left(\frac{2}{3}\right)^2 = 3 \cdot \left(\frac{4}{9}\right) = \frac{12}{9} = \frac{4}{3} \approx 1.33 \][/tex]
- For [tex]\( x = -2 \)[/tex]:
[tex]\[ f(-2) = 3\left(\frac{2}{3}\right)^{-2} = 3 \cdot \left(\frac{3}{2}\right)^2 = 3 \cdot \frac{9}{4} = 6.75 \][/tex]
4. A sample of points:
Here are some approximate points describing the function behavior close to the input:
[tex]\[ \begin{aligned} (-10, 172.99), & \quad (-9.95, 169.51), \quad (-9.90, 166.10), \\ (-9.85, 162.76), & \quad (-9.80, 159.49), \quad (-9.75, 156.28), \\ (-9.70, 153.13), & \quad (-9.65, 150.05), \quad (-9.60, 147.03), \\ (-9.55, 144.08). \end{aligned} \][/tex]
Given the points we have calculated and the behavior described, we can draw the graph of [tex]\( f(x) = 3\left(\frac{2}{3}\right)^x \)[/tex]:
- The function will decay towards 0 as [tex]\( x \to \infty \)[/tex].
- The function will escalate to large values as [tex]\( x \to -\infty \)[/tex].
- The y-intercept is at [tex]\( (0, 3) \)[/tex].
The general shape of the graph will show exponential decay towards the positive x-axis with a rapid increase when moving towards the negative x-axis.
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com for your queries. We’re committed to providing accurate answers, so visit us again soon.