From beginner to expert, IDNLearn.com has answers for everyone. Join our community to receive prompt and reliable responses to your questions from knowledgeable professionals.
Sagot :
To solve this problem, let's use the formula for compound interest:
[tex]\[ A(t) = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
where:
- [tex]\( A(t) \)[/tex] is the amount of money accumulated after [tex]\( t \)[/tex] years, including interest.
- [tex]\( P \)[/tex] is the principal amount (the initial amount of money).
- [tex]\( r \)[/tex] is the annual interest rate (decimal).
- [tex]\( n \)[/tex] is the number of times interest is compounded per year.
- [tex]\( t \)[/tex] is the number of years the money is invested for.
### a) Finding the function for the amount to which the investment grows after [tex]\( t \)[/tex] years:
Given:
- [tex]\( P = \$88,000 \)[/tex]
- [tex]\( r = 3.5\% = 0.035 \)[/tex]
- [tex]\( n = 4 \)[/tex] (since the interest is compounded quarterly)
Substitute [tex]\( P \)[/tex], [tex]\( r \)[/tex], and [tex]\( n \)[/tex] into the compound interest formula:
[tex]\[ A(t) = 88000 \left(1 + \frac{0.035}{4}\right)^{4t} \][/tex]
Simplify the expression inside the parentheses:
[tex]\[ A(t) = 88000 \left(1 + 0.00875\right)^{4t} \][/tex]
[tex]\[ A(t) = 88000 \left(1.00875\right)^{4t} \][/tex]
Thus, the function for the amount to which the investment grows after [tex]\( t \)[/tex] years is:
[tex]\[ A(t) = 88000 \cdot 1.00875^{4t} \][/tex]
### b) Finding the amount of money in the account at [tex]\( t = 0, 2, 7, 10 \)[/tex] years:
Now, we will calculate [tex]\( A(t) \)[/tex] for [tex]\( t = 0, 2, 7, 10 \)[/tex]:
1. When [tex]\( t = 0 \)[/tex]:
[tex]\[ A(0) = 88000 \cdot 1.00875^{4 \cdot 0} \][/tex]
[tex]\[ A(0) = 88000 \cdot 1 = 88000 \][/tex]
So, the amount at [tex]\( t = 0 \)[/tex] years is [tex]\( \$88,000 \)[/tex].
2. When [tex]\( t = 2 \)[/tex]:
[tex]\[ A(2) = 88000 \cdot 1.00875^{4 \cdot 2} \][/tex]
[tex]\[ A(2) = 88000 \cdot 1.00875^8 \approx 94351.9877376592 \][/tex]
So, the amount at [tex]\( t = 2 \)[/tex] years is approximately [tex]\( \$94,351.99 \)[/tex].
3. When [tex]\( t = 7 \)[/tex]:
[tex]\[ A(7) = 88000 \cdot 1.00875^{4 \cdot 7} \][/tex]
[tex]\[ A(7) = 88000 \cdot 1.00875^{28} \approx 112310.926152495 \][/tex]
So, the amount at [tex]\( t = 7 \)[/tex] years is approximately [tex]\( \$112,310.93 \)[/tex].
4. When [tex]\( t = 10 \)[/tex]:
[tex]\[ A(10) = 88000 \cdot 1.00875^{4 \cdot 10} \][/tex]
[tex]\[ A(10) = 88000 \cdot 1.00875^{40} \approx 124687.977737940 \][/tex]
So, the amount at [tex]\( t = 10 \)[/tex] years is approximately [tex]\( \$124,687.98 \)[/tex].
### Summary:
- The function for the amount to which the investment grows after [tex]\( t \)[/tex] years is:
[tex]\[ A(t) = 88000 \cdot 1.00875^{4t} \][/tex]
- The amounts in the account at different times are:
- [tex]\( A(0) = \$88,000 \)[/tex]
- [tex]\( A(2) \approx \$94,351.99 \)[/tex]
- [tex]\( A(7) \approx \$112,310.93 \)[/tex]
- [tex]\( A(10) \approx \$124,687.98 \)[/tex]
[tex]\[ A(t) = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
where:
- [tex]\( A(t) \)[/tex] is the amount of money accumulated after [tex]\( t \)[/tex] years, including interest.
- [tex]\( P \)[/tex] is the principal amount (the initial amount of money).
- [tex]\( r \)[/tex] is the annual interest rate (decimal).
- [tex]\( n \)[/tex] is the number of times interest is compounded per year.
- [tex]\( t \)[/tex] is the number of years the money is invested for.
### a) Finding the function for the amount to which the investment grows after [tex]\( t \)[/tex] years:
Given:
- [tex]\( P = \$88,000 \)[/tex]
- [tex]\( r = 3.5\% = 0.035 \)[/tex]
- [tex]\( n = 4 \)[/tex] (since the interest is compounded quarterly)
Substitute [tex]\( P \)[/tex], [tex]\( r \)[/tex], and [tex]\( n \)[/tex] into the compound interest formula:
[tex]\[ A(t) = 88000 \left(1 + \frac{0.035}{4}\right)^{4t} \][/tex]
Simplify the expression inside the parentheses:
[tex]\[ A(t) = 88000 \left(1 + 0.00875\right)^{4t} \][/tex]
[tex]\[ A(t) = 88000 \left(1.00875\right)^{4t} \][/tex]
Thus, the function for the amount to which the investment grows after [tex]\( t \)[/tex] years is:
[tex]\[ A(t) = 88000 \cdot 1.00875^{4t} \][/tex]
### b) Finding the amount of money in the account at [tex]\( t = 0, 2, 7, 10 \)[/tex] years:
Now, we will calculate [tex]\( A(t) \)[/tex] for [tex]\( t = 0, 2, 7, 10 \)[/tex]:
1. When [tex]\( t = 0 \)[/tex]:
[tex]\[ A(0) = 88000 \cdot 1.00875^{4 \cdot 0} \][/tex]
[tex]\[ A(0) = 88000 \cdot 1 = 88000 \][/tex]
So, the amount at [tex]\( t = 0 \)[/tex] years is [tex]\( \$88,000 \)[/tex].
2. When [tex]\( t = 2 \)[/tex]:
[tex]\[ A(2) = 88000 \cdot 1.00875^{4 \cdot 2} \][/tex]
[tex]\[ A(2) = 88000 \cdot 1.00875^8 \approx 94351.9877376592 \][/tex]
So, the amount at [tex]\( t = 2 \)[/tex] years is approximately [tex]\( \$94,351.99 \)[/tex].
3. When [tex]\( t = 7 \)[/tex]:
[tex]\[ A(7) = 88000 \cdot 1.00875^{4 \cdot 7} \][/tex]
[tex]\[ A(7) = 88000 \cdot 1.00875^{28} \approx 112310.926152495 \][/tex]
So, the amount at [tex]\( t = 7 \)[/tex] years is approximately [tex]\( \$112,310.93 \)[/tex].
4. When [tex]\( t = 10 \)[/tex]:
[tex]\[ A(10) = 88000 \cdot 1.00875^{4 \cdot 10} \][/tex]
[tex]\[ A(10) = 88000 \cdot 1.00875^{40} \approx 124687.977737940 \][/tex]
So, the amount at [tex]\( t = 10 \)[/tex] years is approximately [tex]\( \$124,687.98 \)[/tex].
### Summary:
- The function for the amount to which the investment grows after [tex]\( t \)[/tex] years is:
[tex]\[ A(t) = 88000 \cdot 1.00875^{4t} \][/tex]
- The amounts in the account at different times are:
- [tex]\( A(0) = \$88,000 \)[/tex]
- [tex]\( A(2) \approx \$94,351.99 \)[/tex]
- [tex]\( A(7) \approx \$112,310.93 \)[/tex]
- [tex]\( A(10) \approx \$124,687.98 \)[/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. For trustworthy answers, visit IDNLearn.com. Thank you for your visit, and see you next time for more reliable solutions.