IDNLearn.com provides a user-friendly platform for finding and sharing accurate answers. Join our Q&A platform to receive prompt and accurate responses from knowledgeable professionals in various fields.
Sagot :
To determine the initial temperature of the gold sample, we can use the formula relating heat transfer to mass, specific heat, and temperature change:
[tex]\[ Q = m \cdot C \cdot \Delta T \][/tex]
Where:
- [tex]\( Q \)[/tex] is the heat released ([tex]\( 53.25 \)[/tex] J),
- [tex]\( m \)[/tex] is the mass of the sample ([tex]\( 1.55 \)[/tex] g),
- [tex]\( C \)[/tex] is the specific heat capacity ([tex]\( 0.129 \)[/tex] J/(g°C)),
- [tex]\( \Delta T \)[/tex] is the change in temperature (°C).
First, we need to determine the change in temperature [tex]\( \Delta T \)[/tex].
[tex]\[ \Delta T = \frac{Q}{m \cdot C} \][/tex]
Plugging in the given values:
[tex]\[ \Delta T = \frac{53.25}{1.55 \cdot 0.129} \][/tex]
[tex]\[ \Delta T \approx 266.32 \, \text{°C} \][/tex]
With the change in temperature calculated, we then find the initial temperature [tex]\( T_{\text{initial}} \)[/tex] using the final temperature [tex]\( T_{\text{final}} \)[/tex] and the relationship:
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
Rearranging to solve for [tex]\( T_{\text{initial}} \)[/tex]:
[tex]\[ T_{\text{initial}} = T_{\text{final}} - \Delta T \][/tex]
Given:
[tex]\[ T_{\text{final}} = 73.3 \, \text{°C} \][/tex]
Thus:
[tex]\[ T_{\text{initial}} = 73.3 - 266.32 \][/tex]
[tex]\[ T_{\text{initial}} \approx -193.02 \, \text{°C} \][/tex]
Therefore, the initial temperature of the gold sample was approximately -193.02 °C.
[tex]\[ Q = m \cdot C \cdot \Delta T \][/tex]
Where:
- [tex]\( Q \)[/tex] is the heat released ([tex]\( 53.25 \)[/tex] J),
- [tex]\( m \)[/tex] is the mass of the sample ([tex]\( 1.55 \)[/tex] g),
- [tex]\( C \)[/tex] is the specific heat capacity ([tex]\( 0.129 \)[/tex] J/(g°C)),
- [tex]\( \Delta T \)[/tex] is the change in temperature (°C).
First, we need to determine the change in temperature [tex]\( \Delta T \)[/tex].
[tex]\[ \Delta T = \frac{Q}{m \cdot C} \][/tex]
Plugging in the given values:
[tex]\[ \Delta T = \frac{53.25}{1.55 \cdot 0.129} \][/tex]
[tex]\[ \Delta T \approx 266.32 \, \text{°C} \][/tex]
With the change in temperature calculated, we then find the initial temperature [tex]\( T_{\text{initial}} \)[/tex] using the final temperature [tex]\( T_{\text{final}} \)[/tex] and the relationship:
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
Rearranging to solve for [tex]\( T_{\text{initial}} \)[/tex]:
[tex]\[ T_{\text{initial}} = T_{\text{final}} - \Delta T \][/tex]
Given:
[tex]\[ T_{\text{final}} = 73.3 \, \text{°C} \][/tex]
Thus:
[tex]\[ T_{\text{initial}} = 73.3 - 266.32 \][/tex]
[tex]\[ T_{\text{initial}} \approx -193.02 \, \text{°C} \][/tex]
Therefore, the initial temperature of the gold sample was approximately -193.02 °C.
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Your questions find answers at IDNLearn.com. Thanks for visiting, and come back for more accurate and reliable solutions.