IDNLearn.com is your reliable source for expert answers and community insights. Our platform provides prompt, accurate answers from experts ready to assist you with any question you may have.

Gas Laws Fact Sheet

\begin{tabular}{|l|l|}
\hline Ideal gas law & [tex]$P V=n R T$[/tex] \\
\hline Ideal gas constant & [tex]$R=8.314 \frac{ L \cdot kPa }{ mol \cdot K }$[/tex] \\
& or \\
[tex]$R=0.0821 \frac{ L \cdot atm }{ mol \cdot K }$[/tex] \\
\hline Standard atmospheric pressure & [tex]$1 atm=101.3 kPa$[/tex] \\
\hline Celsius to Kelvin conversion & [tex]$K = { }^{\circ} C + 273.15$[/tex] \\
\hline
\end{tabular}

Type the correct answer in the box. Express your answer to three significant figures.

Air is a mixture of many gases. A 25 L jar of air contains 0.0104 mole of argon at a temperature of 273 K. What is the partial pressure of argon in the jar?

The partial pressure of argon in the jar is [tex]$\square$[/tex] kilopascal.


Sagot :

To find the partial pressure of argon in the jar, we can use the Ideal Gas Law, which is stated as:

[tex]\[ PV = nRT \][/tex]

Where:
- [tex]\( P \)[/tex] is the pressure of the gas,
- [tex]\( V \)[/tex] is the volume of the gas,
- [tex]\( n \)[/tex] is the number of moles of the gas,
- [tex]\( R \)[/tex] is the ideal gas constant,
- [tex]\( T \)[/tex] is the temperature in Kelvin.

Given:
- Volume [tex]\( V = 25 \)[/tex] liters
- Number of moles of argon [tex]\( n = 0.0104 \)[/tex] moles
- Temperature [tex]\( T = 273 \)[/tex] Kelvin
- Ideal gas constant [tex]\( R = 8.314 \, \frac{L \cdot kPa}{mol \cdot K} \)[/tex]

We need to solve for the pressure [tex]\( P \)[/tex]. Rearranging the ideal gas law equation to solve for [tex]\( P \)[/tex]:

[tex]\[ P = \frac{nRT}{V} \][/tex]

Substituting the given values into the equation:

[tex]\[ P = \frac{(0.0104 \, \text{mol}) \times (8.314 \, \frac{L \cdot kPa}{mol \cdot K}) \times (273 \, \text{K})}{25 \, \text{L}} \][/tex]

[tex]\[ P = \frac{23.6202432 \, L \cdot kPa}{25 \, L} \][/tex]

[tex]\[ P = 0.944204352 \, kPa \][/tex]

Expressing the answer to three significant figures:

[tex]\[ P = 0.944 \, kPa \][/tex]

Therefore, the partial pressure of argon in the jar is [tex]\( \boxed{0.944} \)[/tex] kilopascal.