Find detailed and accurate answers to your questions on IDNLearn.com. Ask anything and get well-informed, reliable answers from our knowledgeable community members.
Sagot :
Sure! Let's start by looking at the left-hand side of the given equation:
[tex]\[ \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \cdots + \frac{1}{(2n-1)(2n+1)} \][/tex]
We need to show that this sum equals:
[tex]\[ \frac{n}{2n + 1} \][/tex]
Step-by-Step Solution:
1. Consider a general term:
The general term in the sum is:
[tex]\[ \frac{1}{(2k-1)(2k+1)} \][/tex]
for [tex]\( k \)[/tex], ranging from 1 to [tex]\( n \)[/tex].
2. Simplify the general term:
Notice that:
[tex]\[ \frac{1}{(2k-1)(2k+1)} \][/tex]
can be simplified using partial fractions. We decompose it as follows:
[tex]\[ \frac{1}{(2k-1)(2k+1)} = \frac{A}{2k-1} + \frac{B}{2k+1} \][/tex]
To find [tex]\( A \)[/tex] and [tex]\( B \)[/tex], we set up the equation:
[tex]\[ 1 = A(2k+1) + B(2k-1) \][/tex]
Expanding and combining terms, we get:
[tex]\[ 1 = (2A + 2B)k + (A - B) \][/tex]
For the equation to hold for all [tex]\( k \)[/tex], the coefficients of [tex]\( k \)[/tex] and the constant term must both match:
[tex]\[ 2A + 2B = 0 \quad \text{and} \quad A - B = 1 \][/tex]
Solving these simultaneous equations, we find:
[tex]\[ 2A + 2B = 0 \Rightarrow A + B = 0 \Rightarrow B = -A \][/tex]
[tex]\[ A - B = 1 \Rightarrow A - (-A) = 1 \Rightarrow 2A = 1 \Rightarrow A = \frac{1}{2} \][/tex]
Therefore, [tex]\( B = -\frac{1}{2} \)[/tex].
So, our partial fractions decomposition is:
[tex]\[ \frac{1}{(2k-1)(2k+1)} = \frac{1/2}{2k-1} - \frac{1/2}{2k+1} \][/tex]
Therefore,
[tex]\[ \frac{1}{(2k-1)(2k+1)} = \frac{1}{2} \left( \frac{1}{2k-1} - \frac{1}{2k+1} \right) \][/tex]
3. Sum the series:
Using the simplified form, the sum becomes:
[tex]\[ \sum_{k=1}^n \frac{1}{(2k-1)(2k+1)} = \frac{1}{2} \sum_{k=1}^n \left( \frac{1}{2k-1} - \frac{1}{2k+1} \right) \][/tex]
Notice that this is a telescoping series. Most terms will cancel out:
[tex]\[ \frac{1}{2} \left( \left( \frac{1}{1} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{5} \right) + \cdots + \left( \frac{1}{(2n-1)} - \frac{1}{(2n+1)} \right) \right) \][/tex]
The intermediate terms cancel, leaving:
[tex]\[ \frac{1}{2} \left( 1 - \frac{1}{2n+1} \right) \][/tex]
Simplifying this, we get:
[tex]\[ \frac{1}{2} \left( \frac{2n+1 - 1}{2n+1} \right) = \frac{1}{2} \left( \frac{2n}{2n+1} \right) = \frac{n}{2n+1} \][/tex]
Thus, we have shown that:
[tex]\[ \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \cdots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1} \][/tex]
This completes the proof.
[tex]\[ \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \cdots + \frac{1}{(2n-1)(2n+1)} \][/tex]
We need to show that this sum equals:
[tex]\[ \frac{n}{2n + 1} \][/tex]
Step-by-Step Solution:
1. Consider a general term:
The general term in the sum is:
[tex]\[ \frac{1}{(2k-1)(2k+1)} \][/tex]
for [tex]\( k \)[/tex], ranging from 1 to [tex]\( n \)[/tex].
2. Simplify the general term:
Notice that:
[tex]\[ \frac{1}{(2k-1)(2k+1)} \][/tex]
can be simplified using partial fractions. We decompose it as follows:
[tex]\[ \frac{1}{(2k-1)(2k+1)} = \frac{A}{2k-1} + \frac{B}{2k+1} \][/tex]
To find [tex]\( A \)[/tex] and [tex]\( B \)[/tex], we set up the equation:
[tex]\[ 1 = A(2k+1) + B(2k-1) \][/tex]
Expanding and combining terms, we get:
[tex]\[ 1 = (2A + 2B)k + (A - B) \][/tex]
For the equation to hold for all [tex]\( k \)[/tex], the coefficients of [tex]\( k \)[/tex] and the constant term must both match:
[tex]\[ 2A + 2B = 0 \quad \text{and} \quad A - B = 1 \][/tex]
Solving these simultaneous equations, we find:
[tex]\[ 2A + 2B = 0 \Rightarrow A + B = 0 \Rightarrow B = -A \][/tex]
[tex]\[ A - B = 1 \Rightarrow A - (-A) = 1 \Rightarrow 2A = 1 \Rightarrow A = \frac{1}{2} \][/tex]
Therefore, [tex]\( B = -\frac{1}{2} \)[/tex].
So, our partial fractions decomposition is:
[tex]\[ \frac{1}{(2k-1)(2k+1)} = \frac{1/2}{2k-1} - \frac{1/2}{2k+1} \][/tex]
Therefore,
[tex]\[ \frac{1}{(2k-1)(2k+1)} = \frac{1}{2} \left( \frac{1}{2k-1} - \frac{1}{2k+1} \right) \][/tex]
3. Sum the series:
Using the simplified form, the sum becomes:
[tex]\[ \sum_{k=1}^n \frac{1}{(2k-1)(2k+1)} = \frac{1}{2} \sum_{k=1}^n \left( \frac{1}{2k-1} - \frac{1}{2k+1} \right) \][/tex]
Notice that this is a telescoping series. Most terms will cancel out:
[tex]\[ \frac{1}{2} \left( \left( \frac{1}{1} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{5} \right) + \cdots + \left( \frac{1}{(2n-1)} - \frac{1}{(2n+1)} \right) \right) \][/tex]
The intermediate terms cancel, leaving:
[tex]\[ \frac{1}{2} \left( 1 - \frac{1}{2n+1} \right) \][/tex]
Simplifying this, we get:
[tex]\[ \frac{1}{2} \left( \frac{2n+1 - 1}{2n+1} \right) = \frac{1}{2} \left( \frac{2n}{2n+1} \right) = \frac{n}{2n+1} \][/tex]
Thus, we have shown that:
[tex]\[ \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \cdots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1} \][/tex]
This completes the proof.
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your questions deserve accurate answers. Thank you for visiting IDNLearn.com, and see you again for more solutions.