Connect with a community that values knowledge and expertise on IDNLearn.com. Whether it's a simple query or a complex problem, our community has the answers you need.

Simplify the following expression:

[tex]\[ \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \ldots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1} \][/tex]


Sagot :

Sure! Let's start by looking at the left-hand side of the given equation:

[tex]\[ \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \cdots + \frac{1}{(2n-1)(2n+1)} \][/tex]

We need to show that this sum equals:

[tex]\[ \frac{n}{2n + 1} \][/tex]

Step-by-Step Solution:

1. Consider a general term:

The general term in the sum is:

[tex]\[ \frac{1}{(2k-1)(2k+1)} \][/tex]

for [tex]\( k \)[/tex], ranging from 1 to [tex]\( n \)[/tex].

2. Simplify the general term:

Notice that:

[tex]\[ \frac{1}{(2k-1)(2k+1)} \][/tex]

can be simplified using partial fractions. We decompose it as follows:

[tex]\[ \frac{1}{(2k-1)(2k+1)} = \frac{A}{2k-1} + \frac{B}{2k+1} \][/tex]

To find [tex]\( A \)[/tex] and [tex]\( B \)[/tex], we set up the equation:

[tex]\[ 1 = A(2k+1) + B(2k-1) \][/tex]

Expanding and combining terms, we get:

[tex]\[ 1 = (2A + 2B)k + (A - B) \][/tex]

For the equation to hold for all [tex]\( k \)[/tex], the coefficients of [tex]\( k \)[/tex] and the constant term must both match:

[tex]\[ 2A + 2B = 0 \quad \text{and} \quad A - B = 1 \][/tex]

Solving these simultaneous equations, we find:

[tex]\[ 2A + 2B = 0 \Rightarrow A + B = 0 \Rightarrow B = -A \][/tex]

[tex]\[ A - B = 1 \Rightarrow A - (-A) = 1 \Rightarrow 2A = 1 \Rightarrow A = \frac{1}{2} \][/tex]

Therefore, [tex]\( B = -\frac{1}{2} \)[/tex].

So, our partial fractions decomposition is:

[tex]\[ \frac{1}{(2k-1)(2k+1)} = \frac{1/2}{2k-1} - \frac{1/2}{2k+1} \][/tex]

Therefore,

[tex]\[ \frac{1}{(2k-1)(2k+1)} = \frac{1}{2} \left( \frac{1}{2k-1} - \frac{1}{2k+1} \right) \][/tex]

3. Sum the series:

Using the simplified form, the sum becomes:

[tex]\[ \sum_{k=1}^n \frac{1}{(2k-1)(2k+1)} = \frac{1}{2} \sum_{k=1}^n \left( \frac{1}{2k-1} - \frac{1}{2k+1} \right) \][/tex]

Notice that this is a telescoping series. Most terms will cancel out:

[tex]\[ \frac{1}{2} \left( \left( \frac{1}{1} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{5} \right) + \cdots + \left( \frac{1}{(2n-1)} - \frac{1}{(2n+1)} \right) \right) \][/tex]

The intermediate terms cancel, leaving:

[tex]\[ \frac{1}{2} \left( 1 - \frac{1}{2n+1} \right) \][/tex]

Simplifying this, we get:

[tex]\[ \frac{1}{2} \left( \frac{2n+1 - 1}{2n+1} \right) = \frac{1}{2} \left( \frac{2n}{2n+1} \right) = \frac{n}{2n+1} \][/tex]

Thus, we have shown that:

[tex]\[ \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \cdots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1} \][/tex]

This completes the proof.