Discover a wealth of information and get your questions answered on IDNLearn.com. Whether it's a simple query or a complex problem, our experts have the answers you need.
Sagot :
To determine the enthalpy of the reaction given in the equation:
[tex]\[ 2 C (s, \text{graphite}) + H_2 (g) \rightarrow C_2H_2 (g) \][/tex]
we use the standard enthalpies of formation from the table given. The standard enthalpy of formation ([tex]\(\Delta H_f\)[/tex]) is the change in enthalpy when one mole of a compound is formed from its elements in their standard states.
From the table, we have:
- [tex]\(\Delta H_f \ \text{for} \ C_2 H_2 (g) = 226.73 \ \text{kJ/mol} \)[/tex]
- [tex]\(\Delta H_f \ \text{for} \ C (s, \text{graphite}) = 0.0 \ \text{kJ/mol} \)[/tex]
- [tex]\(\Delta H_f \ \text{for} \ H_2 (g) = 0.0 \ \text{kJ/mol} \)[/tex]
Using the given equation:
[tex]\[ \Delta H_{\text{reaction}} = \sum (\Delta H_{f, \text{products}}) - \sum (\Delta H_{f, \text{reactants}}) \][/tex]
First, we calculate the total enthalpy of the reactants:
For the reactants:
- The enthalpy contribution from [tex]\(C (s, \text{graphite})\)[/tex] is [tex]\(2 \times \Delta H_f (C (s, \text{graphite})) = 2 \times 0.0 \ \text{kJ/mol} = 0.0 \ \text{kJ}\)[/tex]
- The enthalpy contribution from [tex]\(H_2 (g)\)[/tex] is [tex]\(1 \times \Delta H_f (H_2 (g)) = 1 \times 0.0 \ \text{kJ/mol} = 0.0 \ \text{kJ}\)[/tex]
Total enthalpy of reactants:
[tex]\[ \Delta H_{\text{reactants}} = 0.0 \ \text{kJ} + 0.0 \ \text{kJ} = 0.0 \ \text{kJ} \][/tex]
Next, we calculate the total enthalpy of the products:
For the products:
- The enthalpy contribution from [tex]\(C_2 H_2 (g)\)[/tex] is [tex]\(1 \times \Delta H_f (C_2 H_2 (g)) = 1 \times 226.73 \ \text{kJ/mol} = 226.73 \ \text{kJ}\)[/tex]
Total enthalpy of products:
[tex]\[ \Delta H_{\text{products}} = 226.73 \ \text{kJ} \][/tex]
Finally, we calculate the enthalpy of the reaction:
[tex]\[ \Delta H_{\text{reaction}} = \Delta H_{\text{products}} - \Delta H_{\text{reactants}} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = 226.73 \ \text{kJ} - 0.0 \ \text{kJ} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = 226.73 \ \text{kJ} \][/tex]
Therefore, the enthalpy of the reaction ([tex]\(\Delta H_{\text{reaction}}\)[/tex]) is [tex]\(226.73 \ \text{kJ}\)[/tex].
[tex]\[ 2 C (s, \text{graphite}) + H_2 (g) \rightarrow C_2H_2 (g) \][/tex]
we use the standard enthalpies of formation from the table given. The standard enthalpy of formation ([tex]\(\Delta H_f\)[/tex]) is the change in enthalpy when one mole of a compound is formed from its elements in their standard states.
From the table, we have:
- [tex]\(\Delta H_f \ \text{for} \ C_2 H_2 (g) = 226.73 \ \text{kJ/mol} \)[/tex]
- [tex]\(\Delta H_f \ \text{for} \ C (s, \text{graphite}) = 0.0 \ \text{kJ/mol} \)[/tex]
- [tex]\(\Delta H_f \ \text{for} \ H_2 (g) = 0.0 \ \text{kJ/mol} \)[/tex]
Using the given equation:
[tex]\[ \Delta H_{\text{reaction}} = \sum (\Delta H_{f, \text{products}}) - \sum (\Delta H_{f, \text{reactants}}) \][/tex]
First, we calculate the total enthalpy of the reactants:
For the reactants:
- The enthalpy contribution from [tex]\(C (s, \text{graphite})\)[/tex] is [tex]\(2 \times \Delta H_f (C (s, \text{graphite})) = 2 \times 0.0 \ \text{kJ/mol} = 0.0 \ \text{kJ}\)[/tex]
- The enthalpy contribution from [tex]\(H_2 (g)\)[/tex] is [tex]\(1 \times \Delta H_f (H_2 (g)) = 1 \times 0.0 \ \text{kJ/mol} = 0.0 \ \text{kJ}\)[/tex]
Total enthalpy of reactants:
[tex]\[ \Delta H_{\text{reactants}} = 0.0 \ \text{kJ} + 0.0 \ \text{kJ} = 0.0 \ \text{kJ} \][/tex]
Next, we calculate the total enthalpy of the products:
For the products:
- The enthalpy contribution from [tex]\(C_2 H_2 (g)\)[/tex] is [tex]\(1 \times \Delta H_f (C_2 H_2 (g)) = 1 \times 226.73 \ \text{kJ/mol} = 226.73 \ \text{kJ}\)[/tex]
Total enthalpy of products:
[tex]\[ \Delta H_{\text{products}} = 226.73 \ \text{kJ} \][/tex]
Finally, we calculate the enthalpy of the reaction:
[tex]\[ \Delta H_{\text{reaction}} = \Delta H_{\text{products}} - \Delta H_{\text{reactants}} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = 226.73 \ \text{kJ} - 0.0 \ \text{kJ} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = 226.73 \ \text{kJ} \][/tex]
Therefore, the enthalpy of the reaction ([tex]\(\Delta H_{\text{reaction}}\)[/tex]) is [tex]\(226.73 \ \text{kJ}\)[/tex].
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for visiting IDNLearn.com. We’re here to provide clear and concise answers, so visit us again soon.