IDNLearn.com offers a comprehensive solution for all your question and answer needs. Find the answers you need quickly and accurately with help from our knowledgeable and dedicated community members.
Sagot :
To determine whether the function [tex]\( g(x) = \frac{3 - x}{3^{-x}} \)[/tex] is a growth or decay function on specific intervals, we need to examine the behavior of its first derivative.
### Step-by-Step Solution:
1. Rewrite the function:
We start by expressing the given function in a more convenient form:
[tex]\[ g(x) = \frac{3 - x}{3^{-x}} = (3 - x) \cdot 3^x \][/tex]
This simplifies our analyses going forward.
2. Find the derivative of [tex]\( g(x) \)[/tex]:
To determine the nature (growth or decay) of [tex]\( g(x) \)[/tex], we find the first derivative [tex]\( g'(x) \)[/tex].
Applying the product rule, where [tex]\( u = 3 - x \)[/tex] and [tex]\( v = 3^x \)[/tex], we have:
[tex]\[ g(x) = u(x) \cdot v(x) = (3 - x) \cdot 3^x \][/tex]
The derivative of [tex]\( u(x) \)[/tex] is [tex]\( u'(x) = -1 \)[/tex], and the derivative of [tex]\( v(x) \)[/tex] is [tex]\( v'(x) = 3^x \ln(3) \)[/tex].
Using the product rule:
[tex]\[ g'(x) = u'(x) v(x) + u(x) v'(x) \][/tex]
Substituting in the expressions for [tex]\( u, u', v, \)[/tex] and [tex]\( v' \)[/tex]:
[tex]\[ g'(x) = (-1) \cdot 3^x + (3 - x) \cdot 3^x \ln(3) \][/tex]
Simplifying further:
[tex]\[ g'(x) = -3^x + (3 - x) 3^x \ln(3) \][/tex]
Factoring out [tex]\( 3^x \)[/tex]:
[tex]\[ g'(x) = 3^x [ (3 - x) \ln(3) - 1 ] \][/tex]
3. Evaluate the derivative at specific points:
To understand the behavior of [tex]\( g(x) \)[/tex], we need to test the sign of the derivative in the intervals [tex]\( x < 2 \)[/tex] and [tex]\( x > 2 \)[/tex].
* For [tex]\( x < 2 \)[/tex]:
Let's evaluate [tex]\( g'(x) \)[/tex] at [tex]\( x=1 \)[/tex]:
[tex]\[ g'(1) = 3^1 [ (3 - 1) \ln(3) - 1 ] \][/tex]
Simplify inside the brackets:
[tex]\[ g'(1) = 3 [ 2 \ln(3) - 1 ] \][/tex]
We know from logarithmic properties that [tex]\( \ln(3) \)[/tex] is approximately 1.0986, thus:
[tex]\[ 2 \ln(3) - 1 \approx 2 \cdot 1.0986 - 1 \approx 2.1972 - 1 = 1.1972 \][/tex]
Therefore,
[tex]\[ g'(1) \approx 3 \cdot 1.1972 = 3.5916 \][/tex]
Since [tex]\( g'(1) > 0 \)[/tex], the function is increasing for [tex]\( x < 2 \)[/tex], indicating it is a growth function in this interval.
* For [tex]\( x > 2 \)[/tex]:
Let's evaluate [tex]\( g'(x) \)[/tex] at [tex]\( x=3 \)[/tex]:
[tex]\[ g'(3) = 3^3 [ (3 - 3) \ln(3) - 1 ] = 3^3 [ 0 \cdot \ln(3) - 1 ] = 3^3 (-1) \][/tex]
Simplify:
[tex]\[ g'(3) = -3^3 = -27 \][/tex]
Since [tex]\( g'(3) < 0 \)[/tex], the function is decreasing for [tex]\( x > 2 \)[/tex], indicating it is a decay function in this interval.
### Conclusion:
The function [tex]\( g(x) = \frac{3 - x}{3^{-x}} = (3-x)3^x \)[/tex] is a growth function for [tex]\( x < 2 \)[/tex] and a decay function for [tex]\( x > 2 \)[/tex].
### Step-by-Step Solution:
1. Rewrite the function:
We start by expressing the given function in a more convenient form:
[tex]\[ g(x) = \frac{3 - x}{3^{-x}} = (3 - x) \cdot 3^x \][/tex]
This simplifies our analyses going forward.
2. Find the derivative of [tex]\( g(x) \)[/tex]:
To determine the nature (growth or decay) of [tex]\( g(x) \)[/tex], we find the first derivative [tex]\( g'(x) \)[/tex].
Applying the product rule, where [tex]\( u = 3 - x \)[/tex] and [tex]\( v = 3^x \)[/tex], we have:
[tex]\[ g(x) = u(x) \cdot v(x) = (3 - x) \cdot 3^x \][/tex]
The derivative of [tex]\( u(x) \)[/tex] is [tex]\( u'(x) = -1 \)[/tex], and the derivative of [tex]\( v(x) \)[/tex] is [tex]\( v'(x) = 3^x \ln(3) \)[/tex].
Using the product rule:
[tex]\[ g'(x) = u'(x) v(x) + u(x) v'(x) \][/tex]
Substituting in the expressions for [tex]\( u, u', v, \)[/tex] and [tex]\( v' \)[/tex]:
[tex]\[ g'(x) = (-1) \cdot 3^x + (3 - x) \cdot 3^x \ln(3) \][/tex]
Simplifying further:
[tex]\[ g'(x) = -3^x + (3 - x) 3^x \ln(3) \][/tex]
Factoring out [tex]\( 3^x \)[/tex]:
[tex]\[ g'(x) = 3^x [ (3 - x) \ln(3) - 1 ] \][/tex]
3. Evaluate the derivative at specific points:
To understand the behavior of [tex]\( g(x) \)[/tex], we need to test the sign of the derivative in the intervals [tex]\( x < 2 \)[/tex] and [tex]\( x > 2 \)[/tex].
* For [tex]\( x < 2 \)[/tex]:
Let's evaluate [tex]\( g'(x) \)[/tex] at [tex]\( x=1 \)[/tex]:
[tex]\[ g'(1) = 3^1 [ (3 - 1) \ln(3) - 1 ] \][/tex]
Simplify inside the brackets:
[tex]\[ g'(1) = 3 [ 2 \ln(3) - 1 ] \][/tex]
We know from logarithmic properties that [tex]\( \ln(3) \)[/tex] is approximately 1.0986, thus:
[tex]\[ 2 \ln(3) - 1 \approx 2 \cdot 1.0986 - 1 \approx 2.1972 - 1 = 1.1972 \][/tex]
Therefore,
[tex]\[ g'(1) \approx 3 \cdot 1.1972 = 3.5916 \][/tex]
Since [tex]\( g'(1) > 0 \)[/tex], the function is increasing for [tex]\( x < 2 \)[/tex], indicating it is a growth function in this interval.
* For [tex]\( x > 2 \)[/tex]:
Let's evaluate [tex]\( g'(x) \)[/tex] at [tex]\( x=3 \)[/tex]:
[tex]\[ g'(3) = 3^3 [ (3 - 3) \ln(3) - 1 ] = 3^3 [ 0 \cdot \ln(3) - 1 ] = 3^3 (-1) \][/tex]
Simplify:
[tex]\[ g'(3) = -3^3 = -27 \][/tex]
Since [tex]\( g'(3) < 0 \)[/tex], the function is decreasing for [tex]\( x > 2 \)[/tex], indicating it is a decay function in this interval.
### Conclusion:
The function [tex]\( g(x) = \frac{3 - x}{3^{-x}} = (3-x)3^x \)[/tex] is a growth function for [tex]\( x < 2 \)[/tex] and a decay function for [tex]\( x > 2 \)[/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Find clear answers at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.