Find the best answers to your questions with the help of IDNLearn.com's knowledgeable users. Discover the information you need quickly and easily with our reliable and thorough Q&A platform.
Sagot :
Newton's method is an iterative technique to approximate the roots of a real-valued function. Given a function [tex]\( f(x) \)[/tex] and its derivative [tex]\( f'(x) \)[/tex], the method generates a sequence of approximations using the formula:
[tex]\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \][/tex]
Let's start with the given equation [tex]\( e^{0.3 x^2} = 4 - x \)[/tex].
First, we rewrite the equation in the form [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ f(x) = e^{0.3 x^2} - 4 + x \][/tex]
We also need the derivative [tex]\( f'(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx} \left( e^{0.3 x^2} - 4 + x \right) = 0.6 x e^{0.3 x^2} + 1 \][/tex]
We are given the initial approximation [tex]\( x_1 = 1 \)[/tex]. Now we will calculate the second and third approximations.
Step 1: Calculate [tex]\( x_2 \)[/tex]
[tex]\[ x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \][/tex]
First, evaluate [tex]\( f(x_1) \)[/tex] at [tex]\( x_1 = 1 \)[/tex]:
[tex]\[ f(1) = e^{0.3 \cdot 1^2} - 4 + 1 = e^{0.3} - 3 \][/tex]
Then, evaluate [tex]\( f'(x_1) \)[/tex] at [tex]\( x_1 = 1 \)[/tex]:
[tex]\[ f'(1) = 0.6 \cdot 1 \cdot e^{0.3 \cdot 1^2} + 1 = 0.6 e^{0.3} + 1 \][/tex]
Now, calculate [tex]\( x_2 \)[/tex]:
[tex]\[ x_2 = 1 - \frac{e^{0.3} - 3}{0.6 e^{0.3} + 1} \][/tex]
After performing the calculation, we find:
[tex]\[ x_2 \approx 1.9117228891949392 \][/tex]
Step 2: Calculate [tex]\( x_3 \)[/tex]
[tex]\[ x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} \][/tex]
First, evaluate [tex]\( f(x_2) \)[/tex] at [tex]\( x_2 = 1.9117228891949392 \)[/tex]:
[tex]\[ f(1.9117228891949392) = e^{0.3 \cdot (1.9117228891949392)^2} - 4 + 1.9117228891949392 \][/tex]
Then, evaluate [tex]\( f'(x_2) \)[/tex] at [tex]\( x_2 = 1.9117228891949392 \)[/tex]:
[tex]\[ f'(1.9117228891949392) = 0.6 \cdot 1.9117228891949392 \cdot e^{0.3 \cdot (1.9117228891949392)^2} + 1 \][/tex]
Now, calculate [tex]\( x_3 \)[/tex]:
[tex]\[ x_3 = 1.9117228891949392 - \frac{f(1.9117228891949392)}{f'(1.9117228891949392)} \][/tex]
After performing the calculation, we find:
[tex]\[ x_3 \approx 1.7075712731011243 \][/tex]
Therefore, the second approximation [tex]\( x_2 \)[/tex] is approximately [tex]\( 1.9117228891949392 \)[/tex], and the third approximation [tex]\( x_3 \)[/tex] is approximately [tex]\( 1.7075712731011243 \)[/tex].
[tex]\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \][/tex]
Let's start with the given equation [tex]\( e^{0.3 x^2} = 4 - x \)[/tex].
First, we rewrite the equation in the form [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ f(x) = e^{0.3 x^2} - 4 + x \][/tex]
We also need the derivative [tex]\( f'(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx} \left( e^{0.3 x^2} - 4 + x \right) = 0.6 x e^{0.3 x^2} + 1 \][/tex]
We are given the initial approximation [tex]\( x_1 = 1 \)[/tex]. Now we will calculate the second and third approximations.
Step 1: Calculate [tex]\( x_2 \)[/tex]
[tex]\[ x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \][/tex]
First, evaluate [tex]\( f(x_1) \)[/tex] at [tex]\( x_1 = 1 \)[/tex]:
[tex]\[ f(1) = e^{0.3 \cdot 1^2} - 4 + 1 = e^{0.3} - 3 \][/tex]
Then, evaluate [tex]\( f'(x_1) \)[/tex] at [tex]\( x_1 = 1 \)[/tex]:
[tex]\[ f'(1) = 0.6 \cdot 1 \cdot e^{0.3 \cdot 1^2} + 1 = 0.6 e^{0.3} + 1 \][/tex]
Now, calculate [tex]\( x_2 \)[/tex]:
[tex]\[ x_2 = 1 - \frac{e^{0.3} - 3}{0.6 e^{0.3} + 1} \][/tex]
After performing the calculation, we find:
[tex]\[ x_2 \approx 1.9117228891949392 \][/tex]
Step 2: Calculate [tex]\( x_3 \)[/tex]
[tex]\[ x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} \][/tex]
First, evaluate [tex]\( f(x_2) \)[/tex] at [tex]\( x_2 = 1.9117228891949392 \)[/tex]:
[tex]\[ f(1.9117228891949392) = e^{0.3 \cdot (1.9117228891949392)^2} - 4 + 1.9117228891949392 \][/tex]
Then, evaluate [tex]\( f'(x_2) \)[/tex] at [tex]\( x_2 = 1.9117228891949392 \)[/tex]:
[tex]\[ f'(1.9117228891949392) = 0.6 \cdot 1.9117228891949392 \cdot e^{0.3 \cdot (1.9117228891949392)^2} + 1 \][/tex]
Now, calculate [tex]\( x_3 \)[/tex]:
[tex]\[ x_3 = 1.9117228891949392 - \frac{f(1.9117228891949392)}{f'(1.9117228891949392)} \][/tex]
After performing the calculation, we find:
[tex]\[ x_3 \approx 1.7075712731011243 \][/tex]
Therefore, the second approximation [tex]\( x_2 \)[/tex] is approximately [tex]\( 1.9117228891949392 \)[/tex], and the third approximation [tex]\( x_3 \)[/tex] is approximately [tex]\( 1.7075712731011243 \)[/tex].
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Thank you for choosing IDNLearn.com. We’re committed to providing accurate answers, so visit us again soon.