IDNLearn.com provides a collaborative environment for finding accurate answers. Ask your questions and receive prompt, detailed answers from our experienced and knowledgeable community members.
Sagot :
Newton's method is an iterative technique to approximate the roots of a real-valued function. Given a function [tex]\( f(x) \)[/tex] and its derivative [tex]\( f'(x) \)[/tex], the method generates a sequence of approximations using the formula:
[tex]\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \][/tex]
Let's start with the given equation [tex]\( e^{0.3 x^2} = 4 - x \)[/tex].
First, we rewrite the equation in the form [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ f(x) = e^{0.3 x^2} - 4 + x \][/tex]
We also need the derivative [tex]\( f'(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx} \left( e^{0.3 x^2} - 4 + x \right) = 0.6 x e^{0.3 x^2} + 1 \][/tex]
We are given the initial approximation [tex]\( x_1 = 1 \)[/tex]. Now we will calculate the second and third approximations.
Step 1: Calculate [tex]\( x_2 \)[/tex]
[tex]\[ x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \][/tex]
First, evaluate [tex]\( f(x_1) \)[/tex] at [tex]\( x_1 = 1 \)[/tex]:
[tex]\[ f(1) = e^{0.3 \cdot 1^2} - 4 + 1 = e^{0.3} - 3 \][/tex]
Then, evaluate [tex]\( f'(x_1) \)[/tex] at [tex]\( x_1 = 1 \)[/tex]:
[tex]\[ f'(1) = 0.6 \cdot 1 \cdot e^{0.3 \cdot 1^2} + 1 = 0.6 e^{0.3} + 1 \][/tex]
Now, calculate [tex]\( x_2 \)[/tex]:
[tex]\[ x_2 = 1 - \frac{e^{0.3} - 3}{0.6 e^{0.3} + 1} \][/tex]
After performing the calculation, we find:
[tex]\[ x_2 \approx 1.9117228891949392 \][/tex]
Step 2: Calculate [tex]\( x_3 \)[/tex]
[tex]\[ x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} \][/tex]
First, evaluate [tex]\( f(x_2) \)[/tex] at [tex]\( x_2 = 1.9117228891949392 \)[/tex]:
[tex]\[ f(1.9117228891949392) = e^{0.3 \cdot (1.9117228891949392)^2} - 4 + 1.9117228891949392 \][/tex]
Then, evaluate [tex]\( f'(x_2) \)[/tex] at [tex]\( x_2 = 1.9117228891949392 \)[/tex]:
[tex]\[ f'(1.9117228891949392) = 0.6 \cdot 1.9117228891949392 \cdot e^{0.3 \cdot (1.9117228891949392)^2} + 1 \][/tex]
Now, calculate [tex]\( x_3 \)[/tex]:
[tex]\[ x_3 = 1.9117228891949392 - \frac{f(1.9117228891949392)}{f'(1.9117228891949392)} \][/tex]
After performing the calculation, we find:
[tex]\[ x_3 \approx 1.7075712731011243 \][/tex]
Therefore, the second approximation [tex]\( x_2 \)[/tex] is approximately [tex]\( 1.9117228891949392 \)[/tex], and the third approximation [tex]\( x_3 \)[/tex] is approximately [tex]\( 1.7075712731011243 \)[/tex].
[tex]\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \][/tex]
Let's start with the given equation [tex]\( e^{0.3 x^2} = 4 - x \)[/tex].
First, we rewrite the equation in the form [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ f(x) = e^{0.3 x^2} - 4 + x \][/tex]
We also need the derivative [tex]\( f'(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx} \left( e^{0.3 x^2} - 4 + x \right) = 0.6 x e^{0.3 x^2} + 1 \][/tex]
We are given the initial approximation [tex]\( x_1 = 1 \)[/tex]. Now we will calculate the second and third approximations.
Step 1: Calculate [tex]\( x_2 \)[/tex]
[tex]\[ x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \][/tex]
First, evaluate [tex]\( f(x_1) \)[/tex] at [tex]\( x_1 = 1 \)[/tex]:
[tex]\[ f(1) = e^{0.3 \cdot 1^2} - 4 + 1 = e^{0.3} - 3 \][/tex]
Then, evaluate [tex]\( f'(x_1) \)[/tex] at [tex]\( x_1 = 1 \)[/tex]:
[tex]\[ f'(1) = 0.6 \cdot 1 \cdot e^{0.3 \cdot 1^2} + 1 = 0.6 e^{0.3} + 1 \][/tex]
Now, calculate [tex]\( x_2 \)[/tex]:
[tex]\[ x_2 = 1 - \frac{e^{0.3} - 3}{0.6 e^{0.3} + 1} \][/tex]
After performing the calculation, we find:
[tex]\[ x_2 \approx 1.9117228891949392 \][/tex]
Step 2: Calculate [tex]\( x_3 \)[/tex]
[tex]\[ x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} \][/tex]
First, evaluate [tex]\( f(x_2) \)[/tex] at [tex]\( x_2 = 1.9117228891949392 \)[/tex]:
[tex]\[ f(1.9117228891949392) = e^{0.3 \cdot (1.9117228891949392)^2} - 4 + 1.9117228891949392 \][/tex]
Then, evaluate [tex]\( f'(x_2) \)[/tex] at [tex]\( x_2 = 1.9117228891949392 \)[/tex]:
[tex]\[ f'(1.9117228891949392) = 0.6 \cdot 1.9117228891949392 \cdot e^{0.3 \cdot (1.9117228891949392)^2} + 1 \][/tex]
Now, calculate [tex]\( x_3 \)[/tex]:
[tex]\[ x_3 = 1.9117228891949392 - \frac{f(1.9117228891949392)}{f'(1.9117228891949392)} \][/tex]
After performing the calculation, we find:
[tex]\[ x_3 \approx 1.7075712731011243 \][/tex]
Therefore, the second approximation [tex]\( x_2 \)[/tex] is approximately [tex]\( 1.9117228891949392 \)[/tex], and the third approximation [tex]\( x_3 \)[/tex] is approximately [tex]\( 1.7075712731011243 \)[/tex].
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Trust IDNLearn.com for all your queries. We appreciate your visit and hope to assist you again soon.