Get expert advice and community support for all your questions on IDNLearn.com. Explore a wide array of topics and find reliable answers from our experienced community members.
Sagot :
To solve the system of equations using inverse matrices, we should follow these steps:
Step 1: Represent the system of equations in matrix form
Given system:
[tex]\[ \begin{cases} 2x + 5y = -16 \\ -3x - y = 11 \end{cases} \][/tex]
We represent the system in the matrix form [tex]\(AX = B\)[/tex], where [tex]\(A\)[/tex] is the coefficient matrix, [tex]\(X\)[/tex] is the variable matrix, and [tex]\(B\)[/tex] is the constant matrix.
The coefficient matrix [tex]\(A\)[/tex], variable matrix [tex]\(X\)[/tex], and constant matrix [tex]\(B\)[/tex] are:
[tex]\[ A = \begin{pmatrix} 2 & 5 \\ -3 & -1 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \end{pmatrix}, \quad B = \begin{pmatrix} -16 \\ 11 \end{pmatrix} \][/tex]
Step 2: Calculate the determinant of the coefficient matrix [tex]\(A\)[/tex]
To find the inverse of [tex]\(A\)[/tex], we need to ensure it is invertible by checking if its determinant ([tex]\(\det(A)\)[/tex]) is non-zero.
[tex]\[ \det(A) = (2)(-1) - (5)(-3) = -2 + 15 = 13 \][/tex]
The determinant is 13, which is not zero, so [tex]\(A\)[/tex] is invertible.
Step 3: Find the inverse of the coefficient matrix [tex]\(A\)[/tex]
The inverse of a 2x2 matrix [tex]\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex] is given by
[tex]\[ A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
Applying this formula, we get:
[tex]\[ A^{-1} = \frac{1}{13} \begin{pmatrix} -1 & -5 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} -\frac{1}{13} & -\frac{5}{13} \\ \frac{3}{13} & \frac{2}{13} \end{pmatrix} \][/tex]
Step 4: Solve for [tex]\(X\)[/tex] (i.e., [tex]\(x\)[/tex] and [tex]\(y\)[/tex])
We use the inverse of the matrix [tex]\(A\)[/tex] to solve for [tex]\(X\)[/tex] as follows:
[tex]\[ X = A^{-1}B \][/tex]
[tex]\[ \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -\frac{1}{13} & -\frac{5}{13} \\ \frac{3}{13} & \frac{2}{13} \end{pmatrix} \begin{pmatrix} -16 \\ 11 \end{pmatrix} \][/tex]
Step 5: Perform the matrix multiplication
Multiplying the matrices, we get:
For [tex]\(x\)[/tex]:
[tex]\[ x = \left( -\frac{1}{13} \times (-16) \right) + \left( -\frac{5}{13} \times 11 \right) = \frac{16}{13} - \frac{55}{13} = -\frac{39}{13} = -3 \][/tex]
For [tex]\(y\)[/tex]:
[tex]\[ y = \left( \frac{3}{13} \times (-16) \right) + \left( \frac{2}{13} \times 11 \right) = -\frac{48}{13} + \frac{22}{13} = -\frac{26}{13} = -2 \][/tex]
Thus, the solution is:
[tex]\[ x = -3, \quad y = -2 \][/tex]
That's the solution to the system of equations.
Step 1: Represent the system of equations in matrix form
Given system:
[tex]\[ \begin{cases} 2x + 5y = -16 \\ -3x - y = 11 \end{cases} \][/tex]
We represent the system in the matrix form [tex]\(AX = B\)[/tex], where [tex]\(A\)[/tex] is the coefficient matrix, [tex]\(X\)[/tex] is the variable matrix, and [tex]\(B\)[/tex] is the constant matrix.
The coefficient matrix [tex]\(A\)[/tex], variable matrix [tex]\(X\)[/tex], and constant matrix [tex]\(B\)[/tex] are:
[tex]\[ A = \begin{pmatrix} 2 & 5 \\ -3 & -1 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \end{pmatrix}, \quad B = \begin{pmatrix} -16 \\ 11 \end{pmatrix} \][/tex]
Step 2: Calculate the determinant of the coefficient matrix [tex]\(A\)[/tex]
To find the inverse of [tex]\(A\)[/tex], we need to ensure it is invertible by checking if its determinant ([tex]\(\det(A)\)[/tex]) is non-zero.
[tex]\[ \det(A) = (2)(-1) - (5)(-3) = -2 + 15 = 13 \][/tex]
The determinant is 13, which is not zero, so [tex]\(A\)[/tex] is invertible.
Step 3: Find the inverse of the coefficient matrix [tex]\(A\)[/tex]
The inverse of a 2x2 matrix [tex]\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex] is given by
[tex]\[ A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
Applying this formula, we get:
[tex]\[ A^{-1} = \frac{1}{13} \begin{pmatrix} -1 & -5 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} -\frac{1}{13} & -\frac{5}{13} \\ \frac{3}{13} & \frac{2}{13} \end{pmatrix} \][/tex]
Step 4: Solve for [tex]\(X\)[/tex] (i.e., [tex]\(x\)[/tex] and [tex]\(y\)[/tex])
We use the inverse of the matrix [tex]\(A\)[/tex] to solve for [tex]\(X\)[/tex] as follows:
[tex]\[ X = A^{-1}B \][/tex]
[tex]\[ \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -\frac{1}{13} & -\frac{5}{13} \\ \frac{3}{13} & \frac{2}{13} \end{pmatrix} \begin{pmatrix} -16 \\ 11 \end{pmatrix} \][/tex]
Step 5: Perform the matrix multiplication
Multiplying the matrices, we get:
For [tex]\(x\)[/tex]:
[tex]\[ x = \left( -\frac{1}{13} \times (-16) \right) + \left( -\frac{5}{13} \times 11 \right) = \frac{16}{13} - \frac{55}{13} = -\frac{39}{13} = -3 \][/tex]
For [tex]\(y\)[/tex]:
[tex]\[ y = \left( \frac{3}{13} \times (-16) \right) + \left( \frac{2}{13} \times 11 \right) = -\frac{48}{13} + \frac{22}{13} = -\frac{26}{13} = -2 \][/tex]
Thus, the solution is:
[tex]\[ x = -3, \quad y = -2 \][/tex]
That's the solution to the system of equations.
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com provides the answers you need. Thank you for visiting, and see you next time for more valuable insights.