IDNLearn.com makes it easy to find accurate answers to your questions. Find the information you need quickly and easily with our reliable and thorough Q&A platform.
Sagot :
Sure, let's go through the solution step by step:
1. Convert the Wavelength to Meters:
- The given wavelength is [tex]\( 5400 \text{ \AA} \)[/tex].
- To convert angstroms ([tex]\( \text{\AA} \)[/tex]) to meters (m), use the conversion factor [tex]\( 1 \text{ \AA} = 10^{-10} \text{ m} \)[/tex].
- So, [tex]\( 5400 \text{ \AA} = 5400 \times 10^{-10} \text{ m} = 5.4 \times 10^{-7} \text{ m} \)[/tex].
2. Convert the Work Function to Joules:
- The given work function is [tex]\( 1.9 \text{ eV} \)[/tex].
- To convert electron volts (eV) to joules (J), use the conversion factor [tex]\( 1 \text{ eV} = 1.6 \times 10^{-19} \text{ J} \)[/tex].
- So, [tex]\( 1.9 \text{ eV} = 1.9 \times 1.6 \times 10^{-19} \text{ J} = 3.04 \times 10^{-19} \text{ J} \)[/tex].
3. Calculate the Energy of the Incident Photons:
- The energy [tex]\( E \)[/tex] of a photon is given by [tex]\( E = \frac{hc}{\lambda} \)[/tex].
- [tex]\( h \)[/tex] (Planck's constant) = [tex]\( 6.62 \times 10^{-34} \text{ Js} \)[/tex],
- [tex]\( c \)[/tex] (speed of light) = [tex]\( 3 \times 10^8 \text{ m/s} \)[/tex],
- [tex]\( \lambda \)[/tex] (wavelength) = [tex]\( 5.4 \times 10^{-7} \text{ m} \)[/tex],
- So, the photon energy [tex]\( E \)[/tex] is:
[tex]\[ E = \frac{6.62 \times 10^{-34} \text{ Js} \times 3 \times 10^8 \text{ m/s}}{5.4 \times 10^{-7} \text{ m}} = 3.6777777777777773 \times 10^{-19} \text{ J} \][/tex]
4. Calculate the Kinetic Energy of the Emitted Photoelectrons:
- The kinetic energy [tex]\( K.E. \)[/tex] of the emitted photoelectrons is given by the difference between the energy of the incident photons and the work function.
- So, [tex]\( K.E. = E - \text{Work function} \)[/tex]:
[tex]\[ K.E. = 3.6777777777777773 \times 10^{-19} \text{ J} - 3.04 \times 10^{-19} \text{ J} = 6.377777777777775 \times 10^{-20} \text{ J} \][/tex]
5. Calculate the Stopping Potential:
- The stopping potential [tex]\( V_s \)[/tex] is given by the formula [tex]\( eV_s = K.E. \)[/tex],
- where [tex]\( e \)[/tex] (elementary charge) = [tex]\( 1.6 \times 10^{-19} \text{ C} \)[/tex],
- Rearranging for [tex]\( V_s \)[/tex], we have:
[tex]\[ V_s = \frac{K.E.}{e} = \frac{6.377777777777775 \times 10^{-20} \text{ J}}{1.6 \times 10^{-19} \text{ C}} = 0.3986111111111109 \text{ V} \][/tex]
So the energy of the photoelectrons emitted is:
- [tex]\( 6.377777777777775 \times 10^{-20} \text{ J} \)[/tex]
And their stopping potential is approximately:
- [tex]\( 0.4 \text{ V} \)[/tex]
These are the detailed steps to arrive at the solution.
1. Convert the Wavelength to Meters:
- The given wavelength is [tex]\( 5400 \text{ \AA} \)[/tex].
- To convert angstroms ([tex]\( \text{\AA} \)[/tex]) to meters (m), use the conversion factor [tex]\( 1 \text{ \AA} = 10^{-10} \text{ m} \)[/tex].
- So, [tex]\( 5400 \text{ \AA} = 5400 \times 10^{-10} \text{ m} = 5.4 \times 10^{-7} \text{ m} \)[/tex].
2. Convert the Work Function to Joules:
- The given work function is [tex]\( 1.9 \text{ eV} \)[/tex].
- To convert electron volts (eV) to joules (J), use the conversion factor [tex]\( 1 \text{ eV} = 1.6 \times 10^{-19} \text{ J} \)[/tex].
- So, [tex]\( 1.9 \text{ eV} = 1.9 \times 1.6 \times 10^{-19} \text{ J} = 3.04 \times 10^{-19} \text{ J} \)[/tex].
3. Calculate the Energy of the Incident Photons:
- The energy [tex]\( E \)[/tex] of a photon is given by [tex]\( E = \frac{hc}{\lambda} \)[/tex].
- [tex]\( h \)[/tex] (Planck's constant) = [tex]\( 6.62 \times 10^{-34} \text{ Js} \)[/tex],
- [tex]\( c \)[/tex] (speed of light) = [tex]\( 3 \times 10^8 \text{ m/s} \)[/tex],
- [tex]\( \lambda \)[/tex] (wavelength) = [tex]\( 5.4 \times 10^{-7} \text{ m} \)[/tex],
- So, the photon energy [tex]\( E \)[/tex] is:
[tex]\[ E = \frac{6.62 \times 10^{-34} \text{ Js} \times 3 \times 10^8 \text{ m/s}}{5.4 \times 10^{-7} \text{ m}} = 3.6777777777777773 \times 10^{-19} \text{ J} \][/tex]
4. Calculate the Kinetic Energy of the Emitted Photoelectrons:
- The kinetic energy [tex]\( K.E. \)[/tex] of the emitted photoelectrons is given by the difference between the energy of the incident photons and the work function.
- So, [tex]\( K.E. = E - \text{Work function} \)[/tex]:
[tex]\[ K.E. = 3.6777777777777773 \times 10^{-19} \text{ J} - 3.04 \times 10^{-19} \text{ J} = 6.377777777777775 \times 10^{-20} \text{ J} \][/tex]
5. Calculate the Stopping Potential:
- The stopping potential [tex]\( V_s \)[/tex] is given by the formula [tex]\( eV_s = K.E. \)[/tex],
- where [tex]\( e \)[/tex] (elementary charge) = [tex]\( 1.6 \times 10^{-19} \text{ C} \)[/tex],
- Rearranging for [tex]\( V_s \)[/tex], we have:
[tex]\[ V_s = \frac{K.E.}{e} = \frac{6.377777777777775 \times 10^{-20} \text{ J}}{1.6 \times 10^{-19} \text{ C}} = 0.3986111111111109 \text{ V} \][/tex]
So the energy of the photoelectrons emitted is:
- [tex]\( 6.377777777777775 \times 10^{-20} \text{ J} \)[/tex]
And their stopping potential is approximately:
- [tex]\( 0.4 \text{ V} \)[/tex]
These are the detailed steps to arrive at the solution.
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.