Connect with experts and get insightful answers on IDNLearn.com. Join our interactive Q&A community and access a wealth of reliable answers to your most pressing questions.
Sagot :
Sure, let's go through the solution step by step:
1. Convert the Wavelength to Meters:
- The given wavelength is [tex]\( 5400 \text{ \AA} \)[/tex].
- To convert angstroms ([tex]\( \text{\AA} \)[/tex]) to meters (m), use the conversion factor [tex]\( 1 \text{ \AA} = 10^{-10} \text{ m} \)[/tex].
- So, [tex]\( 5400 \text{ \AA} = 5400 \times 10^{-10} \text{ m} = 5.4 \times 10^{-7} \text{ m} \)[/tex].
2. Convert the Work Function to Joules:
- The given work function is [tex]\( 1.9 \text{ eV} \)[/tex].
- To convert electron volts (eV) to joules (J), use the conversion factor [tex]\( 1 \text{ eV} = 1.6 \times 10^{-19} \text{ J} \)[/tex].
- So, [tex]\( 1.9 \text{ eV} = 1.9 \times 1.6 \times 10^{-19} \text{ J} = 3.04 \times 10^{-19} \text{ J} \)[/tex].
3. Calculate the Energy of the Incident Photons:
- The energy [tex]\( E \)[/tex] of a photon is given by [tex]\( E = \frac{hc}{\lambda} \)[/tex].
- [tex]\( h \)[/tex] (Planck's constant) = [tex]\( 6.62 \times 10^{-34} \text{ Js} \)[/tex],
- [tex]\( c \)[/tex] (speed of light) = [tex]\( 3 \times 10^8 \text{ m/s} \)[/tex],
- [tex]\( \lambda \)[/tex] (wavelength) = [tex]\( 5.4 \times 10^{-7} \text{ m} \)[/tex],
- So, the photon energy [tex]\( E \)[/tex] is:
[tex]\[ E = \frac{6.62 \times 10^{-34} \text{ Js} \times 3 \times 10^8 \text{ m/s}}{5.4 \times 10^{-7} \text{ m}} = 3.6777777777777773 \times 10^{-19} \text{ J} \][/tex]
4. Calculate the Kinetic Energy of the Emitted Photoelectrons:
- The kinetic energy [tex]\( K.E. \)[/tex] of the emitted photoelectrons is given by the difference between the energy of the incident photons and the work function.
- So, [tex]\( K.E. = E - \text{Work function} \)[/tex]:
[tex]\[ K.E. = 3.6777777777777773 \times 10^{-19} \text{ J} - 3.04 \times 10^{-19} \text{ J} = 6.377777777777775 \times 10^{-20} \text{ J} \][/tex]
5. Calculate the Stopping Potential:
- The stopping potential [tex]\( V_s \)[/tex] is given by the formula [tex]\( eV_s = K.E. \)[/tex],
- where [tex]\( e \)[/tex] (elementary charge) = [tex]\( 1.6 \times 10^{-19} \text{ C} \)[/tex],
- Rearranging for [tex]\( V_s \)[/tex], we have:
[tex]\[ V_s = \frac{K.E.}{e} = \frac{6.377777777777775 \times 10^{-20} \text{ J}}{1.6 \times 10^{-19} \text{ C}} = 0.3986111111111109 \text{ V} \][/tex]
So the energy of the photoelectrons emitted is:
- [tex]\( 6.377777777777775 \times 10^{-20} \text{ J} \)[/tex]
And their stopping potential is approximately:
- [tex]\( 0.4 \text{ V} \)[/tex]
These are the detailed steps to arrive at the solution.
1. Convert the Wavelength to Meters:
- The given wavelength is [tex]\( 5400 \text{ \AA} \)[/tex].
- To convert angstroms ([tex]\( \text{\AA} \)[/tex]) to meters (m), use the conversion factor [tex]\( 1 \text{ \AA} = 10^{-10} \text{ m} \)[/tex].
- So, [tex]\( 5400 \text{ \AA} = 5400 \times 10^{-10} \text{ m} = 5.4 \times 10^{-7} \text{ m} \)[/tex].
2. Convert the Work Function to Joules:
- The given work function is [tex]\( 1.9 \text{ eV} \)[/tex].
- To convert electron volts (eV) to joules (J), use the conversion factor [tex]\( 1 \text{ eV} = 1.6 \times 10^{-19} \text{ J} \)[/tex].
- So, [tex]\( 1.9 \text{ eV} = 1.9 \times 1.6 \times 10^{-19} \text{ J} = 3.04 \times 10^{-19} \text{ J} \)[/tex].
3. Calculate the Energy of the Incident Photons:
- The energy [tex]\( E \)[/tex] of a photon is given by [tex]\( E = \frac{hc}{\lambda} \)[/tex].
- [tex]\( h \)[/tex] (Planck's constant) = [tex]\( 6.62 \times 10^{-34} \text{ Js} \)[/tex],
- [tex]\( c \)[/tex] (speed of light) = [tex]\( 3 \times 10^8 \text{ m/s} \)[/tex],
- [tex]\( \lambda \)[/tex] (wavelength) = [tex]\( 5.4 \times 10^{-7} \text{ m} \)[/tex],
- So, the photon energy [tex]\( E \)[/tex] is:
[tex]\[ E = \frac{6.62 \times 10^{-34} \text{ Js} \times 3 \times 10^8 \text{ m/s}}{5.4 \times 10^{-7} \text{ m}} = 3.6777777777777773 \times 10^{-19} \text{ J} \][/tex]
4. Calculate the Kinetic Energy of the Emitted Photoelectrons:
- The kinetic energy [tex]\( K.E. \)[/tex] of the emitted photoelectrons is given by the difference between the energy of the incident photons and the work function.
- So, [tex]\( K.E. = E - \text{Work function} \)[/tex]:
[tex]\[ K.E. = 3.6777777777777773 \times 10^{-19} \text{ J} - 3.04 \times 10^{-19} \text{ J} = 6.377777777777775 \times 10^{-20} \text{ J} \][/tex]
5. Calculate the Stopping Potential:
- The stopping potential [tex]\( V_s \)[/tex] is given by the formula [tex]\( eV_s = K.E. \)[/tex],
- where [tex]\( e \)[/tex] (elementary charge) = [tex]\( 1.6 \times 10^{-19} \text{ C} \)[/tex],
- Rearranging for [tex]\( V_s \)[/tex], we have:
[tex]\[ V_s = \frac{K.E.}{e} = \frac{6.377777777777775 \times 10^{-20} \text{ J}}{1.6 \times 10^{-19} \text{ C}} = 0.3986111111111109 \text{ V} \][/tex]
So the energy of the photoelectrons emitted is:
- [tex]\( 6.377777777777775 \times 10^{-20} \text{ J} \)[/tex]
And their stopping potential is approximately:
- [tex]\( 0.4 \text{ V} \)[/tex]
These are the detailed steps to arrive at the solution.
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Trust IDNLearn.com for all your queries. We appreciate your visit and hope to assist you again soon.