Get personalized answers to your unique questions on IDNLearn.com. Get the information you need from our community of experts who provide accurate and comprehensive answers to all your questions.
Sagot :
Sure, let's go through the solution step by step:
1. Convert the Wavelength to Meters:
- The given wavelength is [tex]\( 5400 \text{ \AA} \)[/tex].
- To convert angstroms ([tex]\( \text{\AA} \)[/tex]) to meters (m), use the conversion factor [tex]\( 1 \text{ \AA} = 10^{-10} \text{ m} \)[/tex].
- So, [tex]\( 5400 \text{ \AA} = 5400 \times 10^{-10} \text{ m} = 5.4 \times 10^{-7} \text{ m} \)[/tex].
2. Convert the Work Function to Joules:
- The given work function is [tex]\( 1.9 \text{ eV} \)[/tex].
- To convert electron volts (eV) to joules (J), use the conversion factor [tex]\( 1 \text{ eV} = 1.6 \times 10^{-19} \text{ J} \)[/tex].
- So, [tex]\( 1.9 \text{ eV} = 1.9 \times 1.6 \times 10^{-19} \text{ J} = 3.04 \times 10^{-19} \text{ J} \)[/tex].
3. Calculate the Energy of the Incident Photons:
- The energy [tex]\( E \)[/tex] of a photon is given by [tex]\( E = \frac{hc}{\lambda} \)[/tex].
- [tex]\( h \)[/tex] (Planck's constant) = [tex]\( 6.62 \times 10^{-34} \text{ Js} \)[/tex],
- [tex]\( c \)[/tex] (speed of light) = [tex]\( 3 \times 10^8 \text{ m/s} \)[/tex],
- [tex]\( \lambda \)[/tex] (wavelength) = [tex]\( 5.4 \times 10^{-7} \text{ m} \)[/tex],
- So, the photon energy [tex]\( E \)[/tex] is:
[tex]\[ E = \frac{6.62 \times 10^{-34} \text{ Js} \times 3 \times 10^8 \text{ m/s}}{5.4 \times 10^{-7} \text{ m}} = 3.6777777777777773 \times 10^{-19} \text{ J} \][/tex]
4. Calculate the Kinetic Energy of the Emitted Photoelectrons:
- The kinetic energy [tex]\( K.E. \)[/tex] of the emitted photoelectrons is given by the difference between the energy of the incident photons and the work function.
- So, [tex]\( K.E. = E - \text{Work function} \)[/tex]:
[tex]\[ K.E. = 3.6777777777777773 \times 10^{-19} \text{ J} - 3.04 \times 10^{-19} \text{ J} = 6.377777777777775 \times 10^{-20} \text{ J} \][/tex]
5. Calculate the Stopping Potential:
- The stopping potential [tex]\( V_s \)[/tex] is given by the formula [tex]\( eV_s = K.E. \)[/tex],
- where [tex]\( e \)[/tex] (elementary charge) = [tex]\( 1.6 \times 10^{-19} \text{ C} \)[/tex],
- Rearranging for [tex]\( V_s \)[/tex], we have:
[tex]\[ V_s = \frac{K.E.}{e} = \frac{6.377777777777775 \times 10^{-20} \text{ J}}{1.6 \times 10^{-19} \text{ C}} = 0.3986111111111109 \text{ V} \][/tex]
So the energy of the photoelectrons emitted is:
- [tex]\( 6.377777777777775 \times 10^{-20} \text{ J} \)[/tex]
And their stopping potential is approximately:
- [tex]\( 0.4 \text{ V} \)[/tex]
These are the detailed steps to arrive at the solution.
1. Convert the Wavelength to Meters:
- The given wavelength is [tex]\( 5400 \text{ \AA} \)[/tex].
- To convert angstroms ([tex]\( \text{\AA} \)[/tex]) to meters (m), use the conversion factor [tex]\( 1 \text{ \AA} = 10^{-10} \text{ m} \)[/tex].
- So, [tex]\( 5400 \text{ \AA} = 5400 \times 10^{-10} \text{ m} = 5.4 \times 10^{-7} \text{ m} \)[/tex].
2. Convert the Work Function to Joules:
- The given work function is [tex]\( 1.9 \text{ eV} \)[/tex].
- To convert electron volts (eV) to joules (J), use the conversion factor [tex]\( 1 \text{ eV} = 1.6 \times 10^{-19} \text{ J} \)[/tex].
- So, [tex]\( 1.9 \text{ eV} = 1.9 \times 1.6 \times 10^{-19} \text{ J} = 3.04 \times 10^{-19} \text{ J} \)[/tex].
3. Calculate the Energy of the Incident Photons:
- The energy [tex]\( E \)[/tex] of a photon is given by [tex]\( E = \frac{hc}{\lambda} \)[/tex].
- [tex]\( h \)[/tex] (Planck's constant) = [tex]\( 6.62 \times 10^{-34} \text{ Js} \)[/tex],
- [tex]\( c \)[/tex] (speed of light) = [tex]\( 3 \times 10^8 \text{ m/s} \)[/tex],
- [tex]\( \lambda \)[/tex] (wavelength) = [tex]\( 5.4 \times 10^{-7} \text{ m} \)[/tex],
- So, the photon energy [tex]\( E \)[/tex] is:
[tex]\[ E = \frac{6.62 \times 10^{-34} \text{ Js} \times 3 \times 10^8 \text{ m/s}}{5.4 \times 10^{-7} \text{ m}} = 3.6777777777777773 \times 10^{-19} \text{ J} \][/tex]
4. Calculate the Kinetic Energy of the Emitted Photoelectrons:
- The kinetic energy [tex]\( K.E. \)[/tex] of the emitted photoelectrons is given by the difference between the energy of the incident photons and the work function.
- So, [tex]\( K.E. = E - \text{Work function} \)[/tex]:
[tex]\[ K.E. = 3.6777777777777773 \times 10^{-19} \text{ J} - 3.04 \times 10^{-19} \text{ J} = 6.377777777777775 \times 10^{-20} \text{ J} \][/tex]
5. Calculate the Stopping Potential:
- The stopping potential [tex]\( V_s \)[/tex] is given by the formula [tex]\( eV_s = K.E. \)[/tex],
- where [tex]\( e \)[/tex] (elementary charge) = [tex]\( 1.6 \times 10^{-19} \text{ C} \)[/tex],
- Rearranging for [tex]\( V_s \)[/tex], we have:
[tex]\[ V_s = \frac{K.E.}{e} = \frac{6.377777777777775 \times 10^{-20} \text{ J}}{1.6 \times 10^{-19} \text{ C}} = 0.3986111111111109 \text{ V} \][/tex]
So the energy of the photoelectrons emitted is:
- [tex]\( 6.377777777777775 \times 10^{-20} \text{ J} \)[/tex]
And their stopping potential is approximately:
- [tex]\( 0.4 \text{ V} \)[/tex]
These are the detailed steps to arrive at the solution.
We are happy to have you as part of our community. Keep asking, answering, and sharing your insights. Together, we can create a valuable knowledge resource. For dependable and accurate answers, visit IDNLearn.com. Thanks for visiting, and see you next time for more helpful information.