IDNLearn.com connects you with a global community of knowledgeable individuals. Whether it's a simple query or a complex problem, our experts have the answers you need.
Sagot :
Sure, let's go through the solution step by step:
1. Convert the Wavelength to Meters:
- The given wavelength is [tex]\( 5400 \text{ \AA} \)[/tex].
- To convert angstroms ([tex]\( \text{\AA} \)[/tex]) to meters (m), use the conversion factor [tex]\( 1 \text{ \AA} = 10^{-10} \text{ m} \)[/tex].
- So, [tex]\( 5400 \text{ \AA} = 5400 \times 10^{-10} \text{ m} = 5.4 \times 10^{-7} \text{ m} \)[/tex].
2. Convert the Work Function to Joules:
- The given work function is [tex]\( 1.9 \text{ eV} \)[/tex].
- To convert electron volts (eV) to joules (J), use the conversion factor [tex]\( 1 \text{ eV} = 1.6 \times 10^{-19} \text{ J} \)[/tex].
- So, [tex]\( 1.9 \text{ eV} = 1.9 \times 1.6 \times 10^{-19} \text{ J} = 3.04 \times 10^{-19} \text{ J} \)[/tex].
3. Calculate the Energy of the Incident Photons:
- The energy [tex]\( E \)[/tex] of a photon is given by [tex]\( E = \frac{hc}{\lambda} \)[/tex].
- [tex]\( h \)[/tex] (Planck's constant) = [tex]\( 6.62 \times 10^{-34} \text{ Js} \)[/tex],
- [tex]\( c \)[/tex] (speed of light) = [tex]\( 3 \times 10^8 \text{ m/s} \)[/tex],
- [tex]\( \lambda \)[/tex] (wavelength) = [tex]\( 5.4 \times 10^{-7} \text{ m} \)[/tex],
- So, the photon energy [tex]\( E \)[/tex] is:
[tex]\[ E = \frac{6.62 \times 10^{-34} \text{ Js} \times 3 \times 10^8 \text{ m/s}}{5.4 \times 10^{-7} \text{ m}} = 3.6777777777777773 \times 10^{-19} \text{ J} \][/tex]
4. Calculate the Kinetic Energy of the Emitted Photoelectrons:
- The kinetic energy [tex]\( K.E. \)[/tex] of the emitted photoelectrons is given by the difference between the energy of the incident photons and the work function.
- So, [tex]\( K.E. = E - \text{Work function} \)[/tex]:
[tex]\[ K.E. = 3.6777777777777773 \times 10^{-19} \text{ J} - 3.04 \times 10^{-19} \text{ J} = 6.377777777777775 \times 10^{-20} \text{ J} \][/tex]
5. Calculate the Stopping Potential:
- The stopping potential [tex]\( V_s \)[/tex] is given by the formula [tex]\( eV_s = K.E. \)[/tex],
- where [tex]\( e \)[/tex] (elementary charge) = [tex]\( 1.6 \times 10^{-19} \text{ C} \)[/tex],
- Rearranging for [tex]\( V_s \)[/tex], we have:
[tex]\[ V_s = \frac{K.E.}{e} = \frac{6.377777777777775 \times 10^{-20} \text{ J}}{1.6 \times 10^{-19} \text{ C}} = 0.3986111111111109 \text{ V} \][/tex]
So the energy of the photoelectrons emitted is:
- [tex]\( 6.377777777777775 \times 10^{-20} \text{ J} \)[/tex]
And their stopping potential is approximately:
- [tex]\( 0.4 \text{ V} \)[/tex]
These are the detailed steps to arrive at the solution.
1. Convert the Wavelength to Meters:
- The given wavelength is [tex]\( 5400 \text{ \AA} \)[/tex].
- To convert angstroms ([tex]\( \text{\AA} \)[/tex]) to meters (m), use the conversion factor [tex]\( 1 \text{ \AA} = 10^{-10} \text{ m} \)[/tex].
- So, [tex]\( 5400 \text{ \AA} = 5400 \times 10^{-10} \text{ m} = 5.4 \times 10^{-7} \text{ m} \)[/tex].
2. Convert the Work Function to Joules:
- The given work function is [tex]\( 1.9 \text{ eV} \)[/tex].
- To convert electron volts (eV) to joules (J), use the conversion factor [tex]\( 1 \text{ eV} = 1.6 \times 10^{-19} \text{ J} \)[/tex].
- So, [tex]\( 1.9 \text{ eV} = 1.9 \times 1.6 \times 10^{-19} \text{ J} = 3.04 \times 10^{-19} \text{ J} \)[/tex].
3. Calculate the Energy of the Incident Photons:
- The energy [tex]\( E \)[/tex] of a photon is given by [tex]\( E = \frac{hc}{\lambda} \)[/tex].
- [tex]\( h \)[/tex] (Planck's constant) = [tex]\( 6.62 \times 10^{-34} \text{ Js} \)[/tex],
- [tex]\( c \)[/tex] (speed of light) = [tex]\( 3 \times 10^8 \text{ m/s} \)[/tex],
- [tex]\( \lambda \)[/tex] (wavelength) = [tex]\( 5.4 \times 10^{-7} \text{ m} \)[/tex],
- So, the photon energy [tex]\( E \)[/tex] is:
[tex]\[ E = \frac{6.62 \times 10^{-34} \text{ Js} \times 3 \times 10^8 \text{ m/s}}{5.4 \times 10^{-7} \text{ m}} = 3.6777777777777773 \times 10^{-19} \text{ J} \][/tex]
4. Calculate the Kinetic Energy of the Emitted Photoelectrons:
- The kinetic energy [tex]\( K.E. \)[/tex] of the emitted photoelectrons is given by the difference between the energy of the incident photons and the work function.
- So, [tex]\( K.E. = E - \text{Work function} \)[/tex]:
[tex]\[ K.E. = 3.6777777777777773 \times 10^{-19} \text{ J} - 3.04 \times 10^{-19} \text{ J} = 6.377777777777775 \times 10^{-20} \text{ J} \][/tex]
5. Calculate the Stopping Potential:
- The stopping potential [tex]\( V_s \)[/tex] is given by the formula [tex]\( eV_s = K.E. \)[/tex],
- where [tex]\( e \)[/tex] (elementary charge) = [tex]\( 1.6 \times 10^{-19} \text{ C} \)[/tex],
- Rearranging for [tex]\( V_s \)[/tex], we have:
[tex]\[ V_s = \frac{K.E.}{e} = \frac{6.377777777777775 \times 10^{-20} \text{ J}}{1.6 \times 10^{-19} \text{ C}} = 0.3986111111111109 \text{ V} \][/tex]
So the energy of the photoelectrons emitted is:
- [tex]\( 6.377777777777775 \times 10^{-20} \text{ J} \)[/tex]
And their stopping potential is approximately:
- [tex]\( 0.4 \text{ V} \)[/tex]
These are the detailed steps to arrive at the solution.
We are delighted to have you as part of our community. Keep asking, answering, and sharing your insights. Together, we can create a valuable knowledge resource. Find clear answers at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.
What Is The Distributive Property :( I Forgot What It Was Uh Mrs. Tara Falls Is Killing Me With Math