IDNLearn.com is committed to providing high-quality answers to your questions. Join our interactive Q&A community and get reliable, detailed answers from experienced professionals across a variety of topics.
Sagot :
To find the kinetic energy of the emitted photoelectrons and the stopping potential when light of wavelength [tex]\(5 \times 10^{-7}\)[/tex] meters falls on a metal plate with a work function of 1.90 eV, we will follow these steps:
### Step 1: Calculate the Energy of the Incident Photons
The energy of a photon ([tex]\(E\)[/tex]) can be calculated using the formula:
[tex]\[ E = \frac{h \cdot c}{\lambda} \][/tex]
where
- [tex]\( h = 6.62 \times 10^{-34} \)[/tex] Js (Planck's constant),
- [tex]\( c = 3 \times 10^8 \)[/tex] m/s (speed of light),
- [tex]\( \lambda = 5 \times 10^{-7} \)[/tex] m (wavelength).
Plugging in the values:
[tex]\[ E = \frac{6.62 \times 10^{-34} \, \text{Js} \times 3 \times 10^8 \, \text{m/s}}{5 \times 10^{-7} \, \text{m}} \][/tex]
[tex]\[ E = 3.972 \times 10^{-19} \, \text{J} \][/tex]
### Step 2: Convert the Energy from Joules to Electron Volts
To convert the energy from Joules to electron volts (eV), use:
[tex]\[ 1 \, \text{eV} = 1.6 \times 10^{-19} \, \text{J} \][/tex]
So,
[tex]\[ \text{Energy in eV} = \frac{3.972 \times 10^{-19} \, \text{J}}{1.6 \times 10^{-19} \, \text{J/eV}} \][/tex]
[tex]\[ \text{Energy in eV} \approx 2.4825 \, \text{eV} \][/tex]
### Step 3: Calculate the Kinetic Energy of the Emitted Photoelectrons
The kinetic energy ([tex]\(E_k\)[/tex]) of the emitted photoelectrons can be calculated using the photoelectric equation:
[tex]\[ E_k = E_{\text{photon}} - \phi \][/tex]
where [tex]\(\phi\)[/tex] is the work function of the metal in eV.
[tex]\[ \phi = 1.90 \, \text{eV} \][/tex]
So,
[tex]\[ E_k = 2.4825 \, \text{eV} - 1.90 \, \text{eV} \][/tex]
[tex]\[ E_k = 0.5825 \, \text{eV} \][/tex]
Therefore, the kinetic energy of the emitted photoelectrons is [tex]\(0.5825\)[/tex] eV.
### Step 4: Calculate the Stopping Potential
The stopping potential ([tex]\(V_s\)[/tex]) is equal to the kinetic energy of the emitted photoelectrons in electron volts:
[tex]\[ V_s = E_k \][/tex]
[tex]\[ V_s = 0.5825 \, \text{V} \][/tex]
### Summary
- The energy of the incident photons is approximately [tex]\(3.972 \times 10^{-19}\)[/tex] Joules.
- The energy of the incident photons in electron volts is approximately [tex]\(2.4825\)[/tex] eV.
- The kinetic energy of the emitted photoelectrons is [tex]\(0.5825\)[/tex] eV.
- The stopping potential is [tex]\(0.5825\)[/tex] V.
Hence, the answer is:
[tex]\[ E_k = 0.5825 \, \text{eV}, \quad V_s = 0.5825 \, \text{V} \][/tex]
### Step 1: Calculate the Energy of the Incident Photons
The energy of a photon ([tex]\(E\)[/tex]) can be calculated using the formula:
[tex]\[ E = \frac{h \cdot c}{\lambda} \][/tex]
where
- [tex]\( h = 6.62 \times 10^{-34} \)[/tex] Js (Planck's constant),
- [tex]\( c = 3 \times 10^8 \)[/tex] m/s (speed of light),
- [tex]\( \lambda = 5 \times 10^{-7} \)[/tex] m (wavelength).
Plugging in the values:
[tex]\[ E = \frac{6.62 \times 10^{-34} \, \text{Js} \times 3 \times 10^8 \, \text{m/s}}{5 \times 10^{-7} \, \text{m}} \][/tex]
[tex]\[ E = 3.972 \times 10^{-19} \, \text{J} \][/tex]
### Step 2: Convert the Energy from Joules to Electron Volts
To convert the energy from Joules to electron volts (eV), use:
[tex]\[ 1 \, \text{eV} = 1.6 \times 10^{-19} \, \text{J} \][/tex]
So,
[tex]\[ \text{Energy in eV} = \frac{3.972 \times 10^{-19} \, \text{J}}{1.6 \times 10^{-19} \, \text{J/eV}} \][/tex]
[tex]\[ \text{Energy in eV} \approx 2.4825 \, \text{eV} \][/tex]
### Step 3: Calculate the Kinetic Energy of the Emitted Photoelectrons
The kinetic energy ([tex]\(E_k\)[/tex]) of the emitted photoelectrons can be calculated using the photoelectric equation:
[tex]\[ E_k = E_{\text{photon}} - \phi \][/tex]
where [tex]\(\phi\)[/tex] is the work function of the metal in eV.
[tex]\[ \phi = 1.90 \, \text{eV} \][/tex]
So,
[tex]\[ E_k = 2.4825 \, \text{eV} - 1.90 \, \text{eV} \][/tex]
[tex]\[ E_k = 0.5825 \, \text{eV} \][/tex]
Therefore, the kinetic energy of the emitted photoelectrons is [tex]\(0.5825\)[/tex] eV.
### Step 4: Calculate the Stopping Potential
The stopping potential ([tex]\(V_s\)[/tex]) is equal to the kinetic energy of the emitted photoelectrons in electron volts:
[tex]\[ V_s = E_k \][/tex]
[tex]\[ V_s = 0.5825 \, \text{V} \][/tex]
### Summary
- The energy of the incident photons is approximately [tex]\(3.972 \times 10^{-19}\)[/tex] Joules.
- The energy of the incident photons in electron volts is approximately [tex]\(2.4825\)[/tex] eV.
- The kinetic energy of the emitted photoelectrons is [tex]\(0.5825\)[/tex] eV.
- The stopping potential is [tex]\(0.5825\)[/tex] V.
Hence, the answer is:
[tex]\[ E_k = 0.5825 \, \text{eV}, \quad V_s = 0.5825 \, \text{V} \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Find reliable answers at IDNLearn.com. Thanks for stopping by, and come back for more trustworthy solutions.