IDNLearn.com is committed to providing high-quality answers to your questions. Join our interactive Q&A community and get reliable, detailed answers from experienced professionals across a variety of topics.

Light of wavelength [tex]$5 \times 10^{-7} m$[/tex] falls on a sensitive metal plate with a photoelectric work function of 1.90 eV. Find the kinetic energy of the photoelectrons emitted and the stopping potential. (Given [tex]$h=6.62 \times 10^{-34} Js$[/tex])

---

Answer:
[tex]E_k = 0.58 \text{ eV}[/tex]

[tex]V_s =[/tex]


Sagot :

To find the kinetic energy of the emitted photoelectrons and the stopping potential when light of wavelength [tex]\(5 \times 10^{-7}\)[/tex] meters falls on a metal plate with a work function of 1.90 eV, we will follow these steps:

### Step 1: Calculate the Energy of the Incident Photons
The energy of a photon ([tex]\(E\)[/tex]) can be calculated using the formula:
[tex]\[ E = \frac{h \cdot c}{\lambda} \][/tex]
where
- [tex]\( h = 6.62 \times 10^{-34} \)[/tex] Js (Planck's constant),
- [tex]\( c = 3 \times 10^8 \)[/tex] m/s (speed of light),
- [tex]\( \lambda = 5 \times 10^{-7} \)[/tex] m (wavelength).

Plugging in the values:
[tex]\[ E = \frac{6.62 \times 10^{-34} \, \text{Js} \times 3 \times 10^8 \, \text{m/s}}{5 \times 10^{-7} \, \text{m}} \][/tex]
[tex]\[ E = 3.972 \times 10^{-19} \, \text{J} \][/tex]

### Step 2: Convert the Energy from Joules to Electron Volts
To convert the energy from Joules to electron volts (eV), use:
[tex]\[ 1 \, \text{eV} = 1.6 \times 10^{-19} \, \text{J} \][/tex]
So,
[tex]\[ \text{Energy in eV} = \frac{3.972 \times 10^{-19} \, \text{J}}{1.6 \times 10^{-19} \, \text{J/eV}} \][/tex]
[tex]\[ \text{Energy in eV} \approx 2.4825 \, \text{eV} \][/tex]

### Step 3: Calculate the Kinetic Energy of the Emitted Photoelectrons
The kinetic energy ([tex]\(E_k\)[/tex]) of the emitted photoelectrons can be calculated using the photoelectric equation:
[tex]\[ E_k = E_{\text{photon}} - \phi \][/tex]
where [tex]\(\phi\)[/tex] is the work function of the metal in eV.
[tex]\[ \phi = 1.90 \, \text{eV} \][/tex]

So,
[tex]\[ E_k = 2.4825 \, \text{eV} - 1.90 \, \text{eV} \][/tex]
[tex]\[ E_k = 0.5825 \, \text{eV} \][/tex]
Therefore, the kinetic energy of the emitted photoelectrons is [tex]\(0.5825\)[/tex] eV.

### Step 4: Calculate the Stopping Potential
The stopping potential ([tex]\(V_s\)[/tex]) is equal to the kinetic energy of the emitted photoelectrons in electron volts:
[tex]\[ V_s = E_k \][/tex]
[tex]\[ V_s = 0.5825 \, \text{V} \][/tex]

### Summary
- The energy of the incident photons is approximately [tex]\(3.972 \times 10^{-19}\)[/tex] Joules.
- The energy of the incident photons in electron volts is approximately [tex]\(2.4825\)[/tex] eV.
- The kinetic energy of the emitted photoelectrons is [tex]\(0.5825\)[/tex] eV.
- The stopping potential is [tex]\(0.5825\)[/tex] V.

Hence, the answer is:
[tex]\[ E_k = 0.5825 \, \text{eV}, \quad V_s = 0.5825 \, \text{V} \][/tex]