Find answers to your most challenging questions with the help of IDNLearn.com's experts. Discover in-depth and trustworthy answers from our extensive network of knowledgeable professionals.
Sagot :
To complete the equation that describes how [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are related given the table, we will determine the slope ([tex]\( dy/dx \)[/tex]) between consecutive values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
The given table is:
[tex]\[ \begin{array}{|c|c|c|} \hline x & y & dy \\ \hline -5 & 17 & \\ \hline -4 & 14 & \quad=[?] x \\ \hline -3 & 11 & \\ \hline -2 & 8 & \\ \hline -1 & 5 & \\ \hline 0 & 2 & \\ \hline \end{array} \][/tex]
First, we can look at the change in [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex] for each interval:
[tex]\[ \begin{aligned} dy_1 &= \frac{y(-4) - y(-5)}{-4 - (-5)} = \frac{14 - 17}{-4 + 5} = \frac{-3}{1} = -3, \\ dy_2 &= \frac{y(-3) - y(-4)}{-3 - (-4)} = \frac{11 - 14}{-3 + 4} = \frac{-3}{1} = -3, \\ dy_3 &= \frac{y(-2) - y(-3)}{-2 - (-3)} = \frac{8 - 11}{-2 + 3} = \frac{-3}{1} = -3, \\ dy_4 &= \frac{y(-1) - y(-2)}{-1 - (-2)} = \frac{5 - 8}{-1 + 2} = \frac{-3}{1} = -3, \\ dy_5 &= \frac{y(0) - y(-1)}{0 - (-1)} = \frac{2 - 5}{0 + 1} = \frac{-3}{1} = -3. \end{aligned} \][/tex]
As can be seen from the calculations, the rate of change [tex]\( dy/dx \)[/tex] in each interval is consistently [tex]\(-3\)[/tex].
Therefore, for the row where [tex]\( x = -4 \)[/tex]:
[tex]\[ dy = -3 \times \Delta x \][/tex]
Given [tex]\(\Delta x = 1\)[/tex] (because the difference in [tex]\( x \)[/tex] values is [tex]\(-4 - (-5) = 1\)[/tex]), we can write:
[tex]\[ dy = -3 \times (-4 - (-5)) = -3 \times 1 = -3 \][/tex]
So the relation for [tex]\( dy \)[/tex] when [tex]\( x = -4 \)[/tex] is:
[tex]\[ dy = -3 \times 1 = -3 \][/tex]
Thus, for the row where [tex]\( x = -4 \)[/tex], the completed equation is:
[tex]\[ \begin{array}{|c|c|c|} \hline x & y & dy \\ \hline -5 & 17 & \\ \hline -4 & 14 & = -3 \times 1 \\ \hline -3 & 11 & \\ \hline -2 & 8 & \\ \hline -1 & 5 & \\ \hline 0 & 2 & \\ \hline \end{array} \][/tex]
The given table is:
[tex]\[ \begin{array}{|c|c|c|} \hline x & y & dy \\ \hline -5 & 17 & \\ \hline -4 & 14 & \quad=[?] x \\ \hline -3 & 11 & \\ \hline -2 & 8 & \\ \hline -1 & 5 & \\ \hline 0 & 2 & \\ \hline \end{array} \][/tex]
First, we can look at the change in [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex] for each interval:
[tex]\[ \begin{aligned} dy_1 &= \frac{y(-4) - y(-5)}{-4 - (-5)} = \frac{14 - 17}{-4 + 5} = \frac{-3}{1} = -3, \\ dy_2 &= \frac{y(-3) - y(-4)}{-3 - (-4)} = \frac{11 - 14}{-3 + 4} = \frac{-3}{1} = -3, \\ dy_3 &= \frac{y(-2) - y(-3)}{-2 - (-3)} = \frac{8 - 11}{-2 + 3} = \frac{-3}{1} = -3, \\ dy_4 &= \frac{y(-1) - y(-2)}{-1 - (-2)} = \frac{5 - 8}{-1 + 2} = \frac{-3}{1} = -3, \\ dy_5 &= \frac{y(0) - y(-1)}{0 - (-1)} = \frac{2 - 5}{0 + 1} = \frac{-3}{1} = -3. \end{aligned} \][/tex]
As can be seen from the calculations, the rate of change [tex]\( dy/dx \)[/tex] in each interval is consistently [tex]\(-3\)[/tex].
Therefore, for the row where [tex]\( x = -4 \)[/tex]:
[tex]\[ dy = -3 \times \Delta x \][/tex]
Given [tex]\(\Delta x = 1\)[/tex] (because the difference in [tex]\( x \)[/tex] values is [tex]\(-4 - (-5) = 1\)[/tex]), we can write:
[tex]\[ dy = -3 \times (-4 - (-5)) = -3 \times 1 = -3 \][/tex]
So the relation for [tex]\( dy \)[/tex] when [tex]\( x = -4 \)[/tex] is:
[tex]\[ dy = -3 \times 1 = -3 \][/tex]
Thus, for the row where [tex]\( x = -4 \)[/tex], the completed equation is:
[tex]\[ \begin{array}{|c|c|c|} \hline x & y & dy \\ \hline -5 & 17 & \\ \hline -4 & 14 & = -3 \times 1 \\ \hline -3 & 11 & \\ \hline -2 & 8 & \\ \hline -1 & 5 & \\ \hline 0 & 2 & \\ \hline \end{array} \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.