Discover the best answers to your questions with the help of IDNLearn.com. Our platform is designed to provide accurate and comprehensive answers to any questions you may have.
Sagot :
Sure, let's go through the problem step-by-step to find the ratio of times it takes for a particle to fall equal heights [tex]\( h \)[/tex] from rest when released from a tower of height [tex]\( 3h \)[/tex].
### Step 1: Understand the Problem
A particle is released from rest from the top of a tower of height [tex]\( 3h \)[/tex]. We need to find the ratio of the times taken to fall each height [tex]\( h \)[/tex].
### Step 2: Equations of Motion
We will use the basic equation of motion for freely falling objects:
[tex]\[ h = \frac{1}{2} g t^2 \][/tex]
where:
- [tex]\( h \)[/tex] is the height,
- [tex]\( g \)[/tex] is the acceleration due to gravity ([tex]\( \approx 9.8 \, \text{m/s}^2 \)[/tex]),
- [tex]\( t \)[/tex] is the time taken to fall that height.
### Step 3: Time to Fall Each Height [tex]\( h \)[/tex]
We need to find the times [tex]\( t_1 \)[/tex], [tex]\( t_2 \)[/tex], and [tex]\( t_3 \)[/tex] to fall each height [tex]\( h \)[/tex].
#### Time [tex]\( t_1 \)[/tex] to fall the first height [tex]\( h \)[/tex]:
From [tex]\( 3h \)[/tex] to [tex]\( 2h \)[/tex], the particle falls the first height [tex]\( h \)[/tex].
Using the motion equation:
[tex]\[ h = \frac{1}{2} g t_1^2 \][/tex]
Solving for [tex]\( t_1 \)[/tex]:
[tex]\[ t_1 = \sqrt{\frac{2h}{g}} \][/tex]
#### Time [tex]\( t_2 \)[/tex] to fall the second height [tex]\( h \)[/tex]:
From [tex]\( 2h \)[/tex] to [tex]\( h \)[/tex], the particle falls the second height [tex]\( h \)[/tex]. This time is the difference between the time to fall [tex]\( 2h \)[/tex] and the time to fall [tex]\( h \)[/tex].
[tex]\[ 2h = \frac{1}{2} g t_{2, \text{total}}^2 \][/tex]
Solving for [tex]\( t_{2, \text{total}} \)[/tex]:
[tex]\[ t_{2, \text{total}} = \sqrt{\frac{4h}{g}} \][/tex]
The time [tex]\( t_2 \)[/tex] to fall the second height [tex]\( h \)[/tex] is:
[tex]\[ t_2 = t_{2, \text{total}} - t_1 \][/tex]
[tex]\[ t_2 = \sqrt{\frac{4h}{g}} - \sqrt{\frac{2h}{g}} \][/tex]
#### Time [tex]\( t_3 \)[/tex] to fall the third height [tex]\( h \)[/tex]:
From [tex]\( h \)[/tex] to [tex]\( 0 \)[/tex], the particle falls the third height [tex]\( h \)[/tex]. This time is the difference between the time to fall [tex]\( 3h \)[/tex] and the time to fall [tex]\( 2h \)[/tex].
[tex]\[ 3h = \frac{1}{2} g t_{3, \text{total}}^2 \][/tex]
Solving for [tex]\( t_{3, \text{total}} \)[/tex]:
[tex]\[ t_{3, \text{total}} = \sqrt{\frac{6h}{g}} \][/tex]
The time [tex]\( t_3 \)[/tex] to fall the third height [tex]\( h \)[/tex] is:
[tex]\[ t_3 = t_{3, \text{total}} - t_{2, \text{total}} \][/tex]
[tex]\[ t_3 = \sqrt{\frac{6h}{g}} - \sqrt{\frac{4h}{g}} \][/tex]
### Step 4: Find the Ratio [tex]\( t_1 : t_2 : t_3 \)[/tex]
Substituting the values we calculated:
[tex]\[ t_1 \approx 0.45 \][/tex]
[tex]\[ t_2 \approx 0.19 \][/tex]
[tex]\[ t_3 \approx 0.14 \][/tex]
So, the ratio of the times to fall equal heights [tex]\( h \)[/tex] is approximately:
[tex]\[ t_1 : t_2 : t_3 = 0.45 : 0.19 : 0.14 \][/tex]
Hence, the ratio of the times is:
[tex]\[ \boxed{0.45 : 0.19 : 0.14} \][/tex]
### Step 1: Understand the Problem
A particle is released from rest from the top of a tower of height [tex]\( 3h \)[/tex]. We need to find the ratio of the times taken to fall each height [tex]\( h \)[/tex].
### Step 2: Equations of Motion
We will use the basic equation of motion for freely falling objects:
[tex]\[ h = \frac{1}{2} g t^2 \][/tex]
where:
- [tex]\( h \)[/tex] is the height,
- [tex]\( g \)[/tex] is the acceleration due to gravity ([tex]\( \approx 9.8 \, \text{m/s}^2 \)[/tex]),
- [tex]\( t \)[/tex] is the time taken to fall that height.
### Step 3: Time to Fall Each Height [tex]\( h \)[/tex]
We need to find the times [tex]\( t_1 \)[/tex], [tex]\( t_2 \)[/tex], and [tex]\( t_3 \)[/tex] to fall each height [tex]\( h \)[/tex].
#### Time [tex]\( t_1 \)[/tex] to fall the first height [tex]\( h \)[/tex]:
From [tex]\( 3h \)[/tex] to [tex]\( 2h \)[/tex], the particle falls the first height [tex]\( h \)[/tex].
Using the motion equation:
[tex]\[ h = \frac{1}{2} g t_1^2 \][/tex]
Solving for [tex]\( t_1 \)[/tex]:
[tex]\[ t_1 = \sqrt{\frac{2h}{g}} \][/tex]
#### Time [tex]\( t_2 \)[/tex] to fall the second height [tex]\( h \)[/tex]:
From [tex]\( 2h \)[/tex] to [tex]\( h \)[/tex], the particle falls the second height [tex]\( h \)[/tex]. This time is the difference between the time to fall [tex]\( 2h \)[/tex] and the time to fall [tex]\( h \)[/tex].
[tex]\[ 2h = \frac{1}{2} g t_{2, \text{total}}^2 \][/tex]
Solving for [tex]\( t_{2, \text{total}} \)[/tex]:
[tex]\[ t_{2, \text{total}} = \sqrt{\frac{4h}{g}} \][/tex]
The time [tex]\( t_2 \)[/tex] to fall the second height [tex]\( h \)[/tex] is:
[tex]\[ t_2 = t_{2, \text{total}} - t_1 \][/tex]
[tex]\[ t_2 = \sqrt{\frac{4h}{g}} - \sqrt{\frac{2h}{g}} \][/tex]
#### Time [tex]\( t_3 \)[/tex] to fall the third height [tex]\( h \)[/tex]:
From [tex]\( h \)[/tex] to [tex]\( 0 \)[/tex], the particle falls the third height [tex]\( h \)[/tex]. This time is the difference between the time to fall [tex]\( 3h \)[/tex] and the time to fall [tex]\( 2h \)[/tex].
[tex]\[ 3h = \frac{1}{2} g t_{3, \text{total}}^2 \][/tex]
Solving for [tex]\( t_{3, \text{total}} \)[/tex]:
[tex]\[ t_{3, \text{total}} = \sqrt{\frac{6h}{g}} \][/tex]
The time [tex]\( t_3 \)[/tex] to fall the third height [tex]\( h \)[/tex] is:
[tex]\[ t_3 = t_{3, \text{total}} - t_{2, \text{total}} \][/tex]
[tex]\[ t_3 = \sqrt{\frac{6h}{g}} - \sqrt{\frac{4h}{g}} \][/tex]
### Step 4: Find the Ratio [tex]\( t_1 : t_2 : t_3 \)[/tex]
Substituting the values we calculated:
[tex]\[ t_1 \approx 0.45 \][/tex]
[tex]\[ t_2 \approx 0.19 \][/tex]
[tex]\[ t_3 \approx 0.14 \][/tex]
So, the ratio of the times to fall equal heights [tex]\( h \)[/tex] is approximately:
[tex]\[ t_1 : t_2 : t_3 = 0.45 : 0.19 : 0.14 \][/tex]
Hence, the ratio of the times is:
[tex]\[ \boxed{0.45 : 0.19 : 0.14} \][/tex]
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Find precise solutions at IDNLearn.com. Thank you for trusting us with your queries, and we hope to see you again.