IDNLearn.com is the perfect place to get answers, share knowledge, and learn new things. Get thorough and trustworthy answers to your queries from our extensive network of knowledgeable professionals.

Find the cube roots of [tex]\(-4+4 \sqrt{3} i\)[/tex].

A. [tex]\(2\left(\cos \frac{8 \pi}{9}+i \sin \frac{8 \pi}{9}\right)\)[/tex]

B. [tex]\(2\left(\cos \frac{4 \pi}{9}+i \sin \frac{4 \pi}{9}\right)\)[/tex]

C. [tex]\(2\left(\cos \frac{14 \pi}{9}+i \sin \frac{14 \pi}{9}\right)\)[/tex]

D. [tex]\(4\left(\cos \frac{2 \pi}{9}+i \sin \frac{2 \pi}{9}\right)\)[/tex]

E. [tex]\(4\left(\cos \frac{4 \pi}{9}+i \sin \frac{4 \pi}{9}\right)\)[/tex]

F. [tex]\(4\left(\cos \frac{14 \pi}{9}+i \sin \frac{14 \pi}{9}\right)\)[/tex]

G. [tex]\(4\left(\cos \frac{8 \pi}{9}+i \sin \frac{8 \pi}{9}\right)\)[/tex]

H. [tex]\(2\left(\cos \frac{2 \pi}{9}+i \sin \frac{2 \pi}{9}\right)\)[/tex]


Sagot :

To find the cube roots of [tex]\(-4 + 4 \sqrt{3} i\)[/tex], we can use De Moivre's theorem for complex numbers, which is ideal for this purpose. Here's the step-by-step procedure:

1. Convert the complex number to polar form:
- A complex number [tex]\( z = a + bi \)[/tex] can be written in polar form as [tex]\( z = r(\cos \theta + i \sin \theta) \)[/tex], where [tex]\( r \)[/tex] is the magnitude (modulus) and [tex]\( \theta \)[/tex] is the argument (angle).
- For [tex]\( z = -4 + 4 \sqrt{3} i \)[/tex]:
[tex]\[ r = |z| = \sqrt{(-4)^2 + (4 \sqrt{3})^2} = \sqrt{16 + 48} = \sqrt{64} = 8 \][/tex]
[tex]\[ \theta = \tan^{-1}\left(\frac{\text{Imaginary part}}{\text{Real part}}\right) = \tan^{-1}\left(\frac{4 \sqrt{3}}{-4}\right) = \tan^{-1}(-\sqrt{3}) = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \][/tex]

2. Divide the argument by 3 to find the angles for the cube roots:
- The cube roots will be at angles [tex]\( \frac{\theta + 2k\pi}{3} \)[/tex] for [tex]\( k = 0, 1, 2 \)[/tex].

3. Calculate each of the angles:
- For [tex]\( k = 0 \)[/tex]:
[tex]\[ \theta_0 = \frac{\frac{2\pi}{3} + 2 \cdot 0 \cdot \pi}{3} = \frac{2\pi}{9} \][/tex]
- For [tex]\( k = 1 \)[/tex]:
[tex]\[ \theta_1 = \frac{\frac{2\pi}{3} + 2 \cdot \pi}{3} = \frac{\frac{2\pi}{3} + 2\pi}{3} = \frac{8\pi}{9} \][/tex]
- For [tex]\( k = 2 \)[/tex]:
[tex]\[ \theta_2 = \frac{\frac{2\pi}{3} + 4\pi}{3} = \frac{\frac{2\pi}{3} + 6\pi}{3} = \frac{14\pi}{9} \][/tex]

4. Compute the cube roots using the magnitude [tex]\( r^{1/3} \)[/tex] and the angles:
- The magnitude for each root is [tex]\( 8^{1/3} = 2 \)[/tex].

Thus, the cube roots are:
[tex]\[ z_1 = 2 \left(\cos \frac{2\pi}{9} + i \sin \frac{2\pi}{9}\right) \][/tex]
[tex]\[ z_2 = 2 \left(\cos \frac{8\pi}{9} + i \sin \frac{8\pi}{9}\right) \][/tex]
[tex]\[ z_3 = 2 \left(\cos \frac{14\pi}{9} + i \sin \frac{14\pi}{9}\right) \][/tex]

Therefore, the cube roots of [tex]\(-4 + 4 \sqrt{3} i\)[/tex] are:
[tex]\[ 2\left(\cos \frac{2 \pi}{9}+i \sin \frac{2 \pi}{9}\right) \][/tex]
[tex]\[ 2\left(\cos \frac{8 \pi}{9}+i \sin \frac{8 \pi}{9}\right) \][/tex]
[tex]\[ 2\left(\cos \frac{14 \pi}{9}+i \sin \frac{14 \pi}{9}\right) \][/tex]

Among the given options, the correct cube roots are:
[tex]\[ 2\left(\cos \frac{8 \pi}{9}+i \sin \frac{8 \pi}{9}\right) \][/tex]
[tex]\[ 2\left(\cos \frac{14 \pi}{9}+i \sin \frac{14 \pi}{9}\right) \][/tex]
[tex]\[ 2\left(\cos \frac{2 \pi}{9}+i \sin \frac{2 \pi}{9}\right) \][/tex]
Thus, the correct answers are:
[tex]\[ \boxed{2\left(\cos \frac{2 \pi}{9}+i \sin \frac{2 \pi}{9}\right)}, \boxed{2\left(\cos \frac{8 \pi}{9}+i \sin \frac{8 \pi}{9}\right)}, \boxed{2\left(\cos \frac{14 \pi}{9}+i \sin \frac{14 \pi}{9}\right)} \][/tex]