Get the answers you need from a community of experts on IDNLearn.com. Our community provides timely and precise responses to help you understand and solve any issue you face.
Sagot :
To find the cube roots of [tex]\(-4 + 4 \sqrt{3} i\)[/tex], we can use De Moivre's theorem for complex numbers, which is ideal for this purpose. Here's the step-by-step procedure:
1. Convert the complex number to polar form:
- A complex number [tex]\( z = a + bi \)[/tex] can be written in polar form as [tex]\( z = r(\cos \theta + i \sin \theta) \)[/tex], where [tex]\( r \)[/tex] is the magnitude (modulus) and [tex]\( \theta \)[/tex] is the argument (angle).
- For [tex]\( z = -4 + 4 \sqrt{3} i \)[/tex]:
[tex]\[ r = |z| = \sqrt{(-4)^2 + (4 \sqrt{3})^2} = \sqrt{16 + 48} = \sqrt{64} = 8 \][/tex]
[tex]\[ \theta = \tan^{-1}\left(\frac{\text{Imaginary part}}{\text{Real part}}\right) = \tan^{-1}\left(\frac{4 \sqrt{3}}{-4}\right) = \tan^{-1}(-\sqrt{3}) = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \][/tex]
2. Divide the argument by 3 to find the angles for the cube roots:
- The cube roots will be at angles [tex]\( \frac{\theta + 2k\pi}{3} \)[/tex] for [tex]\( k = 0, 1, 2 \)[/tex].
3. Calculate each of the angles:
- For [tex]\( k = 0 \)[/tex]:
[tex]\[ \theta_0 = \frac{\frac{2\pi}{3} + 2 \cdot 0 \cdot \pi}{3} = \frac{2\pi}{9} \][/tex]
- For [tex]\( k = 1 \)[/tex]:
[tex]\[ \theta_1 = \frac{\frac{2\pi}{3} + 2 \cdot \pi}{3} = \frac{\frac{2\pi}{3} + 2\pi}{3} = \frac{8\pi}{9} \][/tex]
- For [tex]\( k = 2 \)[/tex]:
[tex]\[ \theta_2 = \frac{\frac{2\pi}{3} + 4\pi}{3} = \frac{\frac{2\pi}{3} + 6\pi}{3} = \frac{14\pi}{9} \][/tex]
4. Compute the cube roots using the magnitude [tex]\( r^{1/3} \)[/tex] and the angles:
- The magnitude for each root is [tex]\( 8^{1/3} = 2 \)[/tex].
Thus, the cube roots are:
[tex]\[ z_1 = 2 \left(\cos \frac{2\pi}{9} + i \sin \frac{2\pi}{9}\right) \][/tex]
[tex]\[ z_2 = 2 \left(\cos \frac{8\pi}{9} + i \sin \frac{8\pi}{9}\right) \][/tex]
[tex]\[ z_3 = 2 \left(\cos \frac{14\pi}{9} + i \sin \frac{14\pi}{9}\right) \][/tex]
Therefore, the cube roots of [tex]\(-4 + 4 \sqrt{3} i\)[/tex] are:
[tex]\[ 2\left(\cos \frac{2 \pi}{9}+i \sin \frac{2 \pi}{9}\right) \][/tex]
[tex]\[ 2\left(\cos \frac{8 \pi}{9}+i \sin \frac{8 \pi}{9}\right) \][/tex]
[tex]\[ 2\left(\cos \frac{14 \pi}{9}+i \sin \frac{14 \pi}{9}\right) \][/tex]
Among the given options, the correct cube roots are:
[tex]\[ 2\left(\cos \frac{8 \pi}{9}+i \sin \frac{8 \pi}{9}\right) \][/tex]
[tex]\[ 2\left(\cos \frac{14 \pi}{9}+i \sin \frac{14 \pi}{9}\right) \][/tex]
[tex]\[ 2\left(\cos \frac{2 \pi}{9}+i \sin \frac{2 \pi}{9}\right) \][/tex]
Thus, the correct answers are:
[tex]\[ \boxed{2\left(\cos \frac{2 \pi}{9}+i \sin \frac{2 \pi}{9}\right)}, \boxed{2\left(\cos \frac{8 \pi}{9}+i \sin \frac{8 \pi}{9}\right)}, \boxed{2\left(\cos \frac{14 \pi}{9}+i \sin \frac{14 \pi}{9}\right)} \][/tex]
1. Convert the complex number to polar form:
- A complex number [tex]\( z = a + bi \)[/tex] can be written in polar form as [tex]\( z = r(\cos \theta + i \sin \theta) \)[/tex], where [tex]\( r \)[/tex] is the magnitude (modulus) and [tex]\( \theta \)[/tex] is the argument (angle).
- For [tex]\( z = -4 + 4 \sqrt{3} i \)[/tex]:
[tex]\[ r = |z| = \sqrt{(-4)^2 + (4 \sqrt{3})^2} = \sqrt{16 + 48} = \sqrt{64} = 8 \][/tex]
[tex]\[ \theta = \tan^{-1}\left(\frac{\text{Imaginary part}}{\text{Real part}}\right) = \tan^{-1}\left(\frac{4 \sqrt{3}}{-4}\right) = \tan^{-1}(-\sqrt{3}) = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \][/tex]
2. Divide the argument by 3 to find the angles for the cube roots:
- The cube roots will be at angles [tex]\( \frac{\theta + 2k\pi}{3} \)[/tex] for [tex]\( k = 0, 1, 2 \)[/tex].
3. Calculate each of the angles:
- For [tex]\( k = 0 \)[/tex]:
[tex]\[ \theta_0 = \frac{\frac{2\pi}{3} + 2 \cdot 0 \cdot \pi}{3} = \frac{2\pi}{9} \][/tex]
- For [tex]\( k = 1 \)[/tex]:
[tex]\[ \theta_1 = \frac{\frac{2\pi}{3} + 2 \cdot \pi}{3} = \frac{\frac{2\pi}{3} + 2\pi}{3} = \frac{8\pi}{9} \][/tex]
- For [tex]\( k = 2 \)[/tex]:
[tex]\[ \theta_2 = \frac{\frac{2\pi}{3} + 4\pi}{3} = \frac{\frac{2\pi}{3} + 6\pi}{3} = \frac{14\pi}{9} \][/tex]
4. Compute the cube roots using the magnitude [tex]\( r^{1/3} \)[/tex] and the angles:
- The magnitude for each root is [tex]\( 8^{1/3} = 2 \)[/tex].
Thus, the cube roots are:
[tex]\[ z_1 = 2 \left(\cos \frac{2\pi}{9} + i \sin \frac{2\pi}{9}\right) \][/tex]
[tex]\[ z_2 = 2 \left(\cos \frac{8\pi}{9} + i \sin \frac{8\pi}{9}\right) \][/tex]
[tex]\[ z_3 = 2 \left(\cos \frac{14\pi}{9} + i \sin \frac{14\pi}{9}\right) \][/tex]
Therefore, the cube roots of [tex]\(-4 + 4 \sqrt{3} i\)[/tex] are:
[tex]\[ 2\left(\cos \frac{2 \pi}{9}+i \sin \frac{2 \pi}{9}\right) \][/tex]
[tex]\[ 2\left(\cos \frac{8 \pi}{9}+i \sin \frac{8 \pi}{9}\right) \][/tex]
[tex]\[ 2\left(\cos \frac{14 \pi}{9}+i \sin \frac{14 \pi}{9}\right) \][/tex]
Among the given options, the correct cube roots are:
[tex]\[ 2\left(\cos \frac{8 \pi}{9}+i \sin \frac{8 \pi}{9}\right) \][/tex]
[tex]\[ 2\left(\cos \frac{14 \pi}{9}+i \sin \frac{14 \pi}{9}\right) \][/tex]
[tex]\[ 2\left(\cos \frac{2 \pi}{9}+i \sin \frac{2 \pi}{9}\right) \][/tex]
Thus, the correct answers are:
[tex]\[ \boxed{2\left(\cos \frac{2 \pi}{9}+i \sin \frac{2 \pi}{9}\right)}, \boxed{2\left(\cos \frac{8 \pi}{9}+i \sin \frac{8 \pi}{9}\right)}, \boxed{2\left(\cos \frac{14 \pi}{9}+i \sin \frac{14 \pi}{9}\right)} \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to assisting you again.