Get expert advice and community support for your questions on IDNLearn.com. Our platform provides prompt, accurate answers from experts ready to assist you with any question you may have.
Sagot :
To find the derivative of the function [tex]\( f(x) = x^2 + \frac{1}{x} \)[/tex] using the first principles, we use the definition of the derivative. The first principle, also known as the difference quotient, states that the derivative [tex]\( f'(x) \)[/tex] at a point [tex]\( x \)[/tex] is given by:
[tex]\[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \][/tex]
Let's follow these steps to find the derivative:
1. Define the function [tex]\( f(x) \)[/tex] and evaluate [tex]\( f(x+h) \)[/tex]:
[tex]\[ f(x) = x^2 + \frac{1}{x} \][/tex]
We need to find [tex]\( f(x+h) \)[/tex]:
[tex]\[ f(x+h) = (x+h)^2 + \frac{1}{x+h} \][/tex]
2. Expand [tex]\( f(x+h) \)[/tex]:
[tex]\[ (x+h)^2 = x^2 + 2xh + h^2 \][/tex]
So,
[tex]\[ f(x+h) = x^2 + 2xh + h^2 + \frac{1}{x+h} \][/tex]
3. Subtract [tex]\( f(x) \)[/tex] from [tex]\( f(x+h) \)[/tex]:
[tex]\[ f(x+h) - f(x) = \left( x^2 + 2xh + h^2 + \frac{1}{x+h} \right) - \left( x^2 + \frac{1}{x} \right) \][/tex]
Simplifying this, we get:
[tex]\[ f(x+h) - f(x) = 2xh + h^2 + \frac{1}{x+h} - \frac{1}{x} \][/tex]
4. Form the difference quotient:
[tex]\[ \frac{f(x+h) - f(x)}{h} = \frac{2xh + h^2 + \frac{1}{x+h} - \frac{1}{x}}{h} \][/tex]
5. Simplify the difference quotient:
[tex]\[ \frac{f(x+h) - f(x)}{h} = \frac{2xh}{h} + \frac{h^2}{h} + \frac{\frac{1}{x+h} - \frac{1}{x}}{h} \][/tex]
[tex]\[ = 2x + h + \frac{1}{h} \left( \frac{1}{x+h} - \frac{1}{x} \right) \][/tex]
6. Simplify the term involving the fractions:
[tex]\[ \frac{1}{x+h} - \frac{1}{x} = \frac{x - (x+h)}{x(x+h)} = \frac{-h}{x(x+h)} \][/tex]
So,
[tex]\[ \frac{1}{h} \left( \frac{-h}{x(x+h)} \right) = \frac{-1}{x(x+h)} \][/tex]
7. Combine all terms:
[tex]\[ \frac{f(x+h) - f(x)}{h} = 2x + h - \frac{1}{x(x+h)} \][/tex]
8. Take the limit as [tex]\( h \)[/tex] approaches 0:
[tex]\[ \lim_{h \to 0} \left( 2x + h - \frac{1}{x(x+h)} \right) = 2x + 0 - \frac{1}{x(x+0)} \][/tex]
[tex]\[ = 2x - \frac{1}{x^2} \][/tex]
Therefore, the derivative [tex]\( f'(x) \)[/tex] is:
[tex]\[ f'(x) = 2x - \frac{1}{x^2} \][/tex]
[tex]\[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \][/tex]
Let's follow these steps to find the derivative:
1. Define the function [tex]\( f(x) \)[/tex] and evaluate [tex]\( f(x+h) \)[/tex]:
[tex]\[ f(x) = x^2 + \frac{1}{x} \][/tex]
We need to find [tex]\( f(x+h) \)[/tex]:
[tex]\[ f(x+h) = (x+h)^2 + \frac{1}{x+h} \][/tex]
2. Expand [tex]\( f(x+h) \)[/tex]:
[tex]\[ (x+h)^2 = x^2 + 2xh + h^2 \][/tex]
So,
[tex]\[ f(x+h) = x^2 + 2xh + h^2 + \frac{1}{x+h} \][/tex]
3. Subtract [tex]\( f(x) \)[/tex] from [tex]\( f(x+h) \)[/tex]:
[tex]\[ f(x+h) - f(x) = \left( x^2 + 2xh + h^2 + \frac{1}{x+h} \right) - \left( x^2 + \frac{1}{x} \right) \][/tex]
Simplifying this, we get:
[tex]\[ f(x+h) - f(x) = 2xh + h^2 + \frac{1}{x+h} - \frac{1}{x} \][/tex]
4. Form the difference quotient:
[tex]\[ \frac{f(x+h) - f(x)}{h} = \frac{2xh + h^2 + \frac{1}{x+h} - \frac{1}{x}}{h} \][/tex]
5. Simplify the difference quotient:
[tex]\[ \frac{f(x+h) - f(x)}{h} = \frac{2xh}{h} + \frac{h^2}{h} + \frac{\frac{1}{x+h} - \frac{1}{x}}{h} \][/tex]
[tex]\[ = 2x + h + \frac{1}{h} \left( \frac{1}{x+h} - \frac{1}{x} \right) \][/tex]
6. Simplify the term involving the fractions:
[tex]\[ \frac{1}{x+h} - \frac{1}{x} = \frac{x - (x+h)}{x(x+h)} = \frac{-h}{x(x+h)} \][/tex]
So,
[tex]\[ \frac{1}{h} \left( \frac{-h}{x(x+h)} \right) = \frac{-1}{x(x+h)} \][/tex]
7. Combine all terms:
[tex]\[ \frac{f(x+h) - f(x)}{h} = 2x + h - \frac{1}{x(x+h)} \][/tex]
8. Take the limit as [tex]\( h \)[/tex] approaches 0:
[tex]\[ \lim_{h \to 0} \left( 2x + h - \frac{1}{x(x+h)} \right) = 2x + 0 - \frac{1}{x(x+0)} \][/tex]
[tex]\[ = 2x - \frac{1}{x^2} \][/tex]
Therefore, the derivative [tex]\( f'(x) \)[/tex] is:
[tex]\[ f'(x) = 2x - \frac{1}{x^2} \][/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Discover the answers you need at IDNLearn.com. Thanks for visiting, and come back soon for more valuable insights.