Connect with a community that values knowledge and expertise on IDNLearn.com. Ask anything and receive thorough, reliable answers from our community of experienced professionals.
Sagot :
Let's analyze the given information step by step.
We have the recorded rainfall data over time:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (hr)} & \text{Rainfall (in.)} \\ \hline 1 & 1.65 \\ \hline 2 & 3.30 \\ \hline 3 & 4.95 \\ \hline 4 & 6.60 \\ \hline \end{array} \][/tex]
We are given two functions to test:
1. Anna proposes [tex]\( R(h) = 1.65^h \)[/tex]
2. Luke proposes [tex]\( R(h) = 1.65h \)[/tex]
Anna's Function: [tex]\( R(h) = 1.65^h \)[/tex]
We will calculate the rainfall according to Anna's function for each hour:
- For [tex]\( h = 1 \)[/tex], [tex]\( R(1) = 1.65^1 = 1.65 \)[/tex]
- For [tex]\( h = 2 \)[/tex], [tex]\( R(2) = 1.65^2 \approx 2.7225 \)[/tex]
- For [tex]\( h = 3 \)[/tex], [tex]\( R(3) = 1.65^3 \approx 4.4921 \)[/tex]
- For [tex]\( h = 4 \)[/tex], [tex]\( R(4) = 1.65^4 \approx 7.4120 \)[/tex]
When we compare these values with the actual recorded data, we notice that Anna's function does not match:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (hr)} & \text{Rainfall (in.)} & \text{Anna's Function} \\ \hline 1 & 1.65 & 1.65 \\ \hline 2 & 3.30 & 2.7225 \\ \hline 3 & 4.95 & 4.4921 \\ \hline 4 & 6.60 & 7.4120 \\ \hline \end{array} \][/tex]
Therefore, Anna's function [tex]\(\boxed{\text{cannot}}\)[/tex] be used to find the amount of rainfall after [tex]\( h \)[/tex] hours. The function displays exponential growth, not a consistent linear increase. Thus, each hour, an additional [tex]\(\boxed{\text{N/A}}\)[/tex] inches of rain is accumulated. Equal differences represent a [tex]\(\boxed{\text{N/A}}\)[/tex] relationship.
Luke's Function: [tex]\( R(h) = 1.65h \)[/tex]
Next, we calculate the rainfall according to Luke's function for each hour:
- For [tex]\( h = 1 \)[/tex], [tex]\( R(1) = 1.65 \times 1 = 1.65 \)[/tex]
- For [tex]\( h = 2 \)[/tex], [tex]\( R(2) = 1.65 \times 2 = 3.30 \)[/tex]
- For [tex]\( h = 3 \)[/tex], [tex]\( R(3) = 1.65 \times 3 = 4.95 \)[/tex]
- For [tex]\( h = 4 \)[/tex], [tex]\( R(4) = 1.65 \times 4 = 6.60 \)[/tex]
When we compare these values with the actual recorded data, we notice that Luke's function matches perfectly:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (hr)} & \text{Rainfall (in.)} & \text{Luke's Function} \\ \hline 1 & 1.65 & 1.65 \\ \hline 2 & 3.30 & 3.30 \\ \hline 3 & 4.95 & 4.95 \\ \hline 4 & 6.60 & 6.60 \\ \hline \end{array} \][/tex]
Therefore, Luke's function [tex]\(\boxed{\text{can}}\)[/tex] be used to find the amount of rainfall after [tex]\( h \)[/tex] hours. For every hour that passes, [tex]\(\boxed{1.65}\)[/tex] inches of rain is accumulated. This represents a consistent, linear relationship.
In summary:
Anna [tex]\( R(h) = 1.65^h \)[/tex]
- This function [tex]\(\boxed{\text{cannot}}\)[/tex] be used to find the amount of rainfall after [tex]\( h \)[/tex] hours.
- Each hour, an additional [tex]\(\boxed{\text{N/A}}\)[/tex] inches of rain is accumulated.
- Equal differences represent a [tex]\(\boxed{\text{N/A}}\)[/tex] relationship.
Luke [tex]\( R(h) = 1.65h \)[/tex]
- This function [tex]\(\boxed{\text{can}}\)[/tex] be used to find the amount of rainfall after [tex]\( h \)[/tex] hours.
- For every hour that passes, [tex]\(\boxed{1.65}\)[/tex] inches of rain is accumulated.
We have the recorded rainfall data over time:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (hr)} & \text{Rainfall (in.)} \\ \hline 1 & 1.65 \\ \hline 2 & 3.30 \\ \hline 3 & 4.95 \\ \hline 4 & 6.60 \\ \hline \end{array} \][/tex]
We are given two functions to test:
1. Anna proposes [tex]\( R(h) = 1.65^h \)[/tex]
2. Luke proposes [tex]\( R(h) = 1.65h \)[/tex]
Anna's Function: [tex]\( R(h) = 1.65^h \)[/tex]
We will calculate the rainfall according to Anna's function for each hour:
- For [tex]\( h = 1 \)[/tex], [tex]\( R(1) = 1.65^1 = 1.65 \)[/tex]
- For [tex]\( h = 2 \)[/tex], [tex]\( R(2) = 1.65^2 \approx 2.7225 \)[/tex]
- For [tex]\( h = 3 \)[/tex], [tex]\( R(3) = 1.65^3 \approx 4.4921 \)[/tex]
- For [tex]\( h = 4 \)[/tex], [tex]\( R(4) = 1.65^4 \approx 7.4120 \)[/tex]
When we compare these values with the actual recorded data, we notice that Anna's function does not match:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (hr)} & \text{Rainfall (in.)} & \text{Anna's Function} \\ \hline 1 & 1.65 & 1.65 \\ \hline 2 & 3.30 & 2.7225 \\ \hline 3 & 4.95 & 4.4921 \\ \hline 4 & 6.60 & 7.4120 \\ \hline \end{array} \][/tex]
Therefore, Anna's function [tex]\(\boxed{\text{cannot}}\)[/tex] be used to find the amount of rainfall after [tex]\( h \)[/tex] hours. The function displays exponential growth, not a consistent linear increase. Thus, each hour, an additional [tex]\(\boxed{\text{N/A}}\)[/tex] inches of rain is accumulated. Equal differences represent a [tex]\(\boxed{\text{N/A}}\)[/tex] relationship.
Luke's Function: [tex]\( R(h) = 1.65h \)[/tex]
Next, we calculate the rainfall according to Luke's function for each hour:
- For [tex]\( h = 1 \)[/tex], [tex]\( R(1) = 1.65 \times 1 = 1.65 \)[/tex]
- For [tex]\( h = 2 \)[/tex], [tex]\( R(2) = 1.65 \times 2 = 3.30 \)[/tex]
- For [tex]\( h = 3 \)[/tex], [tex]\( R(3) = 1.65 \times 3 = 4.95 \)[/tex]
- For [tex]\( h = 4 \)[/tex], [tex]\( R(4) = 1.65 \times 4 = 6.60 \)[/tex]
When we compare these values with the actual recorded data, we notice that Luke's function matches perfectly:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (hr)} & \text{Rainfall (in.)} & \text{Luke's Function} \\ \hline 1 & 1.65 & 1.65 \\ \hline 2 & 3.30 & 3.30 \\ \hline 3 & 4.95 & 4.95 \\ \hline 4 & 6.60 & 6.60 \\ \hline \end{array} \][/tex]
Therefore, Luke's function [tex]\(\boxed{\text{can}}\)[/tex] be used to find the amount of rainfall after [tex]\( h \)[/tex] hours. For every hour that passes, [tex]\(\boxed{1.65}\)[/tex] inches of rain is accumulated. This represents a consistent, linear relationship.
In summary:
Anna [tex]\( R(h) = 1.65^h \)[/tex]
- This function [tex]\(\boxed{\text{cannot}}\)[/tex] be used to find the amount of rainfall after [tex]\( h \)[/tex] hours.
- Each hour, an additional [tex]\(\boxed{\text{N/A}}\)[/tex] inches of rain is accumulated.
- Equal differences represent a [tex]\(\boxed{\text{N/A}}\)[/tex] relationship.
Luke [tex]\( R(h) = 1.65h \)[/tex]
- This function [tex]\(\boxed{\text{can}}\)[/tex] be used to find the amount of rainfall after [tex]\( h \)[/tex] hours.
- For every hour that passes, [tex]\(\boxed{1.65}\)[/tex] inches of rain is accumulated.
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Accurate answers are just a click away at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.