IDNLearn.com connects you with experts who provide accurate and reliable answers. Join our community to access reliable and comprehensive responses to your questions from experienced professionals.

Use standard reduction potentials to calculate the equilibrium constant for the reaction:

[tex]\[
\begin{array}{l}
Hg^{2+}(aq) + 2Ag(s) \rightarrow Hg(l) + 2Ag^{+}(aq) \\
\begin{array}{|l|l|}
Hg^{2+}(aq) + 2e^{-} \rightarrow Hg(l) & E_{red}^{\circ} = 0.855\,V \\
\hline
Ag^{+}(aq) + e^{-} \rightarrow Ag(s) & E_{red}^{\circ} = 0.799\,V \\
\hline
\end{array}
\end{array}
\][/tex]

Hint: Carry at least 5 significant figures during intermediate calculations to avoid round-off error when taking the antilogarithm.

Equilibrium constant at 298 K: [tex]$\square$[/tex]

[tex]$\Delta G^{\circ}$[/tex] for this reaction would be [tex]$\square$[/tex] than zero.


Sagot :

To calculate the equilibrium constant for the reaction provided and determine [tex]\(\Delta G^\circ\)[/tex], let's follow the step-by-step solution:

1. Write the half-reactions and their standard reduction potentials:

[tex]\[ \begin{array}{l} Hg^{2+}(aq) + 2e^- \rightarrow Hg(l) \quad E_{red}^\circ = 0.855 \text{ V} \\ Ag^+(aq) + e^- \rightarrow Ag(s) \quad E_{red}^\circ = 0.799 \text{ V} \end{array} \][/tex]

2. Identify the anode and cathode reactions:
- The anode is where oxidation occurs: [tex]\(Ag(s) \rightarrow Ag^+(aq) + e^-\)[/tex]
- The cathode is where reduction occurs: [tex]\(Hg^{2+}(aq) + 2e^- \rightarrow Hg(l)\)[/tex]

3. Determine the standard cell potential [tex]\(E^\circ_{cell}\)[/tex]:
- Use the standard reduction potentials to find [tex]\(E^\circ_{cell}\)[/tex]:
[tex]\[ E^\circ_{cell} = E^\circ_{cathode} - E^\circ_{anode} \][/tex]
- Here, [tex]\(E^\circ_{cathode} = 0.855 \text{ V}\)[/tex] and [tex]\(E^\circ_{anode} = 0.799 \text{ V}\)[/tex].

So,
[tex]\[ E^\circ_{cell} = 0.855 \text{ V} - 0.799 \text{ V} = 0.056 \text{ V} \][/tex]

4. Calculate the equilibrium constant [tex]\(K\)[/tex] at 298 K:
- The relationship between [tex]\(E^\circ_{cell}\)[/tex] and the equilibrium constant [tex]\(K\)[/tex] is given by:
[tex]\[ E^\circ_{cell} = \frac{0.0591}{n} \log_{10}(K) \quad \text{(at 298 K)} \][/tex]
- Here, [tex]\(n\)[/tex] is the number of moles of electrons transferred, which is 2.

Solving for [tex]\(\log_{10}(K)\)[/tex]:
[tex]\[ \log_{10}(K) = \frac{n \cdot E^\circ_{cell}}{0.0591} \][/tex]
Plugging in the values:
[tex]\[ \log_{10}(K) = \frac{2 \cdot 0.056}{0.0591} = 1.8951 \][/tex]

- To find [tex]\(K\)[/tex], take the antilogarithm (base 10):
[tex]\[ K = 10^{1.8951} = 78.540 \][/tex]

5. Calculate [tex]\(\Delta G^\circ\)[/tex] for the reaction:
- Use the relationship between [tex]\(\Delta G^\circ\)[/tex], [tex]\(n\)[/tex], [tex]\(F\)[/tex], and [tex]\(E^\circ_{cell}\)[/tex]:
[tex]\[ \Delta G^\circ = -nFE^\circ_{cell} \][/tex]
- Where [tex]\(F\)[/tex] is the Faraday constant, [tex]\(F = 96485 \text{ C/mol}\)[/tex].

Plugging in the values:
[tex]\[ \Delta G^\circ = -2 \cdot 96485 \cdot 0.056 = -10806.32 \text{ J/mol} \][/tex]

6. Determine if [tex]\(\Delta G^\circ\)[/tex] is greater or less than zero:
- Since [tex]\(\Delta G^\circ = -10806.32 \text{ J/mol}\)[/tex], which is negative, [tex]\(\Delta G^\circ\)[/tex] for this reaction is less than zero.

Final Answers:

- The equilibrium constant [tex]\(K\)[/tex] at 298 K is: [tex]\(78.540\)[/tex].
- [tex]\(\Delta G^\circ\)[/tex] for this reaction would be less than zero.