IDNLearn.com provides a comprehensive platform for finding accurate answers. Ask anything and get well-informed, reliable answers from our knowledgeable community members.
Sagot :
To calculate the equilibrium constant for the reaction provided and determine [tex]\(\Delta G^\circ\)[/tex], let's follow the step-by-step solution:
1. Write the half-reactions and their standard reduction potentials:
[tex]\[ \begin{array}{l} Hg^{2+}(aq) + 2e^- \rightarrow Hg(l) \quad E_{red}^\circ = 0.855 \text{ V} \\ Ag^+(aq) + e^- \rightarrow Ag(s) \quad E_{red}^\circ = 0.799 \text{ V} \end{array} \][/tex]
2. Identify the anode and cathode reactions:
- The anode is where oxidation occurs: [tex]\(Ag(s) \rightarrow Ag^+(aq) + e^-\)[/tex]
- The cathode is where reduction occurs: [tex]\(Hg^{2+}(aq) + 2e^- \rightarrow Hg(l)\)[/tex]
3. Determine the standard cell potential [tex]\(E^\circ_{cell}\)[/tex]:
- Use the standard reduction potentials to find [tex]\(E^\circ_{cell}\)[/tex]:
[tex]\[ E^\circ_{cell} = E^\circ_{cathode} - E^\circ_{anode} \][/tex]
- Here, [tex]\(E^\circ_{cathode} = 0.855 \text{ V}\)[/tex] and [tex]\(E^\circ_{anode} = 0.799 \text{ V}\)[/tex].
So,
[tex]\[ E^\circ_{cell} = 0.855 \text{ V} - 0.799 \text{ V} = 0.056 \text{ V} \][/tex]
4. Calculate the equilibrium constant [tex]\(K\)[/tex] at 298 K:
- The relationship between [tex]\(E^\circ_{cell}\)[/tex] and the equilibrium constant [tex]\(K\)[/tex] is given by:
[tex]\[ E^\circ_{cell} = \frac{0.0591}{n} \log_{10}(K) \quad \text{(at 298 K)} \][/tex]
- Here, [tex]\(n\)[/tex] is the number of moles of electrons transferred, which is 2.
Solving for [tex]\(\log_{10}(K)\)[/tex]:
[tex]\[ \log_{10}(K) = \frac{n \cdot E^\circ_{cell}}{0.0591} \][/tex]
Plugging in the values:
[tex]\[ \log_{10}(K) = \frac{2 \cdot 0.056}{0.0591} = 1.8951 \][/tex]
- To find [tex]\(K\)[/tex], take the antilogarithm (base 10):
[tex]\[ K = 10^{1.8951} = 78.540 \][/tex]
5. Calculate [tex]\(\Delta G^\circ\)[/tex] for the reaction:
- Use the relationship between [tex]\(\Delta G^\circ\)[/tex], [tex]\(n\)[/tex], [tex]\(F\)[/tex], and [tex]\(E^\circ_{cell}\)[/tex]:
[tex]\[ \Delta G^\circ = -nFE^\circ_{cell} \][/tex]
- Where [tex]\(F\)[/tex] is the Faraday constant, [tex]\(F = 96485 \text{ C/mol}\)[/tex].
Plugging in the values:
[tex]\[ \Delta G^\circ = -2 \cdot 96485 \cdot 0.056 = -10806.32 \text{ J/mol} \][/tex]
6. Determine if [tex]\(\Delta G^\circ\)[/tex] is greater or less than zero:
- Since [tex]\(\Delta G^\circ = -10806.32 \text{ J/mol}\)[/tex], which is negative, [tex]\(\Delta G^\circ\)[/tex] for this reaction is less than zero.
Final Answers:
- The equilibrium constant [tex]\(K\)[/tex] at 298 K is: [tex]\(78.540\)[/tex].
- [tex]\(\Delta G^\circ\)[/tex] for this reaction would be less than zero.
1. Write the half-reactions and their standard reduction potentials:
[tex]\[ \begin{array}{l} Hg^{2+}(aq) + 2e^- \rightarrow Hg(l) \quad E_{red}^\circ = 0.855 \text{ V} \\ Ag^+(aq) + e^- \rightarrow Ag(s) \quad E_{red}^\circ = 0.799 \text{ V} \end{array} \][/tex]
2. Identify the anode and cathode reactions:
- The anode is where oxidation occurs: [tex]\(Ag(s) \rightarrow Ag^+(aq) + e^-\)[/tex]
- The cathode is where reduction occurs: [tex]\(Hg^{2+}(aq) + 2e^- \rightarrow Hg(l)\)[/tex]
3. Determine the standard cell potential [tex]\(E^\circ_{cell}\)[/tex]:
- Use the standard reduction potentials to find [tex]\(E^\circ_{cell}\)[/tex]:
[tex]\[ E^\circ_{cell} = E^\circ_{cathode} - E^\circ_{anode} \][/tex]
- Here, [tex]\(E^\circ_{cathode} = 0.855 \text{ V}\)[/tex] and [tex]\(E^\circ_{anode} = 0.799 \text{ V}\)[/tex].
So,
[tex]\[ E^\circ_{cell} = 0.855 \text{ V} - 0.799 \text{ V} = 0.056 \text{ V} \][/tex]
4. Calculate the equilibrium constant [tex]\(K\)[/tex] at 298 K:
- The relationship between [tex]\(E^\circ_{cell}\)[/tex] and the equilibrium constant [tex]\(K\)[/tex] is given by:
[tex]\[ E^\circ_{cell} = \frac{0.0591}{n} \log_{10}(K) \quad \text{(at 298 K)} \][/tex]
- Here, [tex]\(n\)[/tex] is the number of moles of electrons transferred, which is 2.
Solving for [tex]\(\log_{10}(K)\)[/tex]:
[tex]\[ \log_{10}(K) = \frac{n \cdot E^\circ_{cell}}{0.0591} \][/tex]
Plugging in the values:
[tex]\[ \log_{10}(K) = \frac{2 \cdot 0.056}{0.0591} = 1.8951 \][/tex]
- To find [tex]\(K\)[/tex], take the antilogarithm (base 10):
[tex]\[ K = 10^{1.8951} = 78.540 \][/tex]
5. Calculate [tex]\(\Delta G^\circ\)[/tex] for the reaction:
- Use the relationship between [tex]\(\Delta G^\circ\)[/tex], [tex]\(n\)[/tex], [tex]\(F\)[/tex], and [tex]\(E^\circ_{cell}\)[/tex]:
[tex]\[ \Delta G^\circ = -nFE^\circ_{cell} \][/tex]
- Where [tex]\(F\)[/tex] is the Faraday constant, [tex]\(F = 96485 \text{ C/mol}\)[/tex].
Plugging in the values:
[tex]\[ \Delta G^\circ = -2 \cdot 96485 \cdot 0.056 = -10806.32 \text{ J/mol} \][/tex]
6. Determine if [tex]\(\Delta G^\circ\)[/tex] is greater or less than zero:
- Since [tex]\(\Delta G^\circ = -10806.32 \text{ J/mol}\)[/tex], which is negative, [tex]\(\Delta G^\circ\)[/tex] for this reaction is less than zero.
Final Answers:
- The equilibrium constant [tex]\(K\)[/tex] at 298 K is: [tex]\(78.540\)[/tex].
- [tex]\(\Delta G^\circ\)[/tex] for this reaction would be less than zero.
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Find precise solutions at IDNLearn.com. Thank you for trusting us with your queries, and we hope to see you again.