From personal advice to professional guidance, IDNLearn.com has the answers you seek. Our platform provides accurate, detailed responses to help you navigate any topic with ease.
Sagot :
To calculate the equilibrium constant for the given redox reaction and determine the Gibbs free energy change for the reaction, follow these steps:
1. Write down the given reduction potentials:
[tex]\[ \begin{aligned} \text{Reduction potential for } & \text{Fe}^{3+}/\text{Fe}^{2+}: & E_{\text{red}}^\circ & = 0.771 \, \text{V} \\ \text{Reduction potential for } & \text{Cr}^{3+}/\text{Cr}^{2+}: & E_{\text{red}}^\circ & = -0.410 \, \text{V} \end{aligned} \][/tex]
2. Determine the standard cell potential [tex]\(E_{\text{cell}}^\circ\)[/tex]:
[tex]\[ E_{\text{cell}}^\circ = E_{\text{red}}^\circ(\text{Fe}^{3+}/\text{Fe}^{2+}) - E_{\text{red}}^\circ(\text{Cr}^{3+}/\text{Cr}^{2+}) \][/tex]
[tex]\[ E_{\text{cell}}^\circ = 0.771 \, \text{V} - (-0.410 \, \text{V}) = 0.771 \, \text{V} + 0.410 \, \text{V} = 1.181 \, \text{V} \][/tex]
3. Calculate the standard Gibbs free energy change [tex]\(\Delta G^\circ\)[/tex]:
The equation relating [tex]\( \Delta G^\circ \)[/tex] and [tex]\( E_{\text{cell}}^\circ \)[/tex] is:
[tex]\[ \Delta G^\circ = -n F E_{\text{cell}}^\circ \][/tex]
Where:
- [tex]\( n \)[/tex] is the number of moles of electrons transferred (in this case, [tex]\( n = 1 \)[/tex]).
- [tex]\( F \)[/tex] is the Faraday constant [tex]\( (96485.33212 \, \text{C/mol}) \)[/tex].
Substituting the values:
[tex]\[ \Delta G^\circ = -(1) \times 96485.33212 \, \text{C/mol} \times 1.181 \, \text{V} \][/tex]
[tex]\[ \Delta G^\circ = -113949.17723372001 \, \text{J/mol} \][/tex]
4. Calculate the equilibrium constant, [tex]\( K_{\text{eq}} \)[/tex]:
The relationship between [tex]\( \Delta G^\circ \)[/tex] and [tex]\( K_{\text{eq}} \)[/tex] is given by:
[tex]\[ \Delta G^\circ = -RT \ln K_{\text{eq}} \][/tex]
Where:
- [tex]\( R \)[/tex] is the gas constant (8.314 J/(mol K)).
- [tex]\( T \)[/tex] is the temperature (298 K).
Rearranging the equation to solve for [tex]\( K_{\text{eq}} \)[/tex]:
[tex]\[ K_{\text{eq}} = \exp\left(\frac{-\Delta G^\circ}{RT}\right) \][/tex]
Substituting the values:
[tex]\[ K_{\text{eq}} = \exp\left(\frac{-(-113949.17723372001 \, \text{J/mol})}{8.314 \, \text{J/(mol K)} \times 298 \, \text{K}}\right) \][/tex]
[tex]\[ K_{\text{eq}} = \exp\left(\frac{113949.17723372001}{2477.372}\right) \][/tex]
[tex]\[ K_{\text{eq}} = \exp(46.003858) \][/tex]
[tex]\[ K_{\text{eq}} = 9.423061542465036 \times 10^{19} \][/tex]
5. Interpret the Gibbs free energy change [tex]\( \Delta G^\circ \)[/tex]:
Since [tex]\( \Delta G^\circ \)[/tex] is negative [tex]\((-113949.17723372001 \, \text{J/mol})\)[/tex], it indicates that the reaction is spontaneous under standard conditions.
Thus, the equilibrium constant at 298 K is [tex]\( 9.423061542465036 \times 10^{19} \)[/tex], and [tex]\( \Delta G^\circ \)[/tex] for this reaction is less than zero, indicating a spontaneous reaction.
1. Write down the given reduction potentials:
[tex]\[ \begin{aligned} \text{Reduction potential for } & \text{Fe}^{3+}/\text{Fe}^{2+}: & E_{\text{red}}^\circ & = 0.771 \, \text{V} \\ \text{Reduction potential for } & \text{Cr}^{3+}/\text{Cr}^{2+}: & E_{\text{red}}^\circ & = -0.410 \, \text{V} \end{aligned} \][/tex]
2. Determine the standard cell potential [tex]\(E_{\text{cell}}^\circ\)[/tex]:
[tex]\[ E_{\text{cell}}^\circ = E_{\text{red}}^\circ(\text{Fe}^{3+}/\text{Fe}^{2+}) - E_{\text{red}}^\circ(\text{Cr}^{3+}/\text{Cr}^{2+}) \][/tex]
[tex]\[ E_{\text{cell}}^\circ = 0.771 \, \text{V} - (-0.410 \, \text{V}) = 0.771 \, \text{V} + 0.410 \, \text{V} = 1.181 \, \text{V} \][/tex]
3. Calculate the standard Gibbs free energy change [tex]\(\Delta G^\circ\)[/tex]:
The equation relating [tex]\( \Delta G^\circ \)[/tex] and [tex]\( E_{\text{cell}}^\circ \)[/tex] is:
[tex]\[ \Delta G^\circ = -n F E_{\text{cell}}^\circ \][/tex]
Where:
- [tex]\( n \)[/tex] is the number of moles of electrons transferred (in this case, [tex]\( n = 1 \)[/tex]).
- [tex]\( F \)[/tex] is the Faraday constant [tex]\( (96485.33212 \, \text{C/mol}) \)[/tex].
Substituting the values:
[tex]\[ \Delta G^\circ = -(1) \times 96485.33212 \, \text{C/mol} \times 1.181 \, \text{V} \][/tex]
[tex]\[ \Delta G^\circ = -113949.17723372001 \, \text{J/mol} \][/tex]
4. Calculate the equilibrium constant, [tex]\( K_{\text{eq}} \)[/tex]:
The relationship between [tex]\( \Delta G^\circ \)[/tex] and [tex]\( K_{\text{eq}} \)[/tex] is given by:
[tex]\[ \Delta G^\circ = -RT \ln K_{\text{eq}} \][/tex]
Where:
- [tex]\( R \)[/tex] is the gas constant (8.314 J/(mol K)).
- [tex]\( T \)[/tex] is the temperature (298 K).
Rearranging the equation to solve for [tex]\( K_{\text{eq}} \)[/tex]:
[tex]\[ K_{\text{eq}} = \exp\left(\frac{-\Delta G^\circ}{RT}\right) \][/tex]
Substituting the values:
[tex]\[ K_{\text{eq}} = \exp\left(\frac{-(-113949.17723372001 \, \text{J/mol})}{8.314 \, \text{J/(mol K)} \times 298 \, \text{K}}\right) \][/tex]
[tex]\[ K_{\text{eq}} = \exp\left(\frac{113949.17723372001}{2477.372}\right) \][/tex]
[tex]\[ K_{\text{eq}} = \exp(46.003858) \][/tex]
[tex]\[ K_{\text{eq}} = 9.423061542465036 \times 10^{19} \][/tex]
5. Interpret the Gibbs free energy change [tex]\( \Delta G^\circ \)[/tex]:
Since [tex]\( \Delta G^\circ \)[/tex] is negative [tex]\((-113949.17723372001 \, \text{J/mol})\)[/tex], it indicates that the reaction is spontaneous under standard conditions.
Thus, the equilibrium constant at 298 K is [tex]\( 9.423061542465036 \times 10^{19} \)[/tex], and [tex]\( \Delta G^\circ \)[/tex] for this reaction is less than zero, indicating a spontaneous reaction.
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.