Get the answers you've been looking for with the help of IDNLearn.com's expert community. Our community is here to provide detailed and trustworthy answers to any questions you may have.
Sagot :
To calculate the equilibrium constant for the given redox reaction and determine the Gibbs free energy change for the reaction, follow these steps:
1. Write down the given reduction potentials:
[tex]\[ \begin{aligned} \text{Reduction potential for } & \text{Fe}^{3+}/\text{Fe}^{2+}: & E_{\text{red}}^\circ & = 0.771 \, \text{V} \\ \text{Reduction potential for } & \text{Cr}^{3+}/\text{Cr}^{2+}: & E_{\text{red}}^\circ & = -0.410 \, \text{V} \end{aligned} \][/tex]
2. Determine the standard cell potential [tex]\(E_{\text{cell}}^\circ\)[/tex]:
[tex]\[ E_{\text{cell}}^\circ = E_{\text{red}}^\circ(\text{Fe}^{3+}/\text{Fe}^{2+}) - E_{\text{red}}^\circ(\text{Cr}^{3+}/\text{Cr}^{2+}) \][/tex]
[tex]\[ E_{\text{cell}}^\circ = 0.771 \, \text{V} - (-0.410 \, \text{V}) = 0.771 \, \text{V} + 0.410 \, \text{V} = 1.181 \, \text{V} \][/tex]
3. Calculate the standard Gibbs free energy change [tex]\(\Delta G^\circ\)[/tex]:
The equation relating [tex]\( \Delta G^\circ \)[/tex] and [tex]\( E_{\text{cell}}^\circ \)[/tex] is:
[tex]\[ \Delta G^\circ = -n F E_{\text{cell}}^\circ \][/tex]
Where:
- [tex]\( n \)[/tex] is the number of moles of electrons transferred (in this case, [tex]\( n = 1 \)[/tex]).
- [tex]\( F \)[/tex] is the Faraday constant [tex]\( (96485.33212 \, \text{C/mol}) \)[/tex].
Substituting the values:
[tex]\[ \Delta G^\circ = -(1) \times 96485.33212 \, \text{C/mol} \times 1.181 \, \text{V} \][/tex]
[tex]\[ \Delta G^\circ = -113949.17723372001 \, \text{J/mol} \][/tex]
4. Calculate the equilibrium constant, [tex]\( K_{\text{eq}} \)[/tex]:
The relationship between [tex]\( \Delta G^\circ \)[/tex] and [tex]\( K_{\text{eq}} \)[/tex] is given by:
[tex]\[ \Delta G^\circ = -RT \ln K_{\text{eq}} \][/tex]
Where:
- [tex]\( R \)[/tex] is the gas constant (8.314 J/(mol K)).
- [tex]\( T \)[/tex] is the temperature (298 K).
Rearranging the equation to solve for [tex]\( K_{\text{eq}} \)[/tex]:
[tex]\[ K_{\text{eq}} = \exp\left(\frac{-\Delta G^\circ}{RT}\right) \][/tex]
Substituting the values:
[tex]\[ K_{\text{eq}} = \exp\left(\frac{-(-113949.17723372001 \, \text{J/mol})}{8.314 \, \text{J/(mol K)} \times 298 \, \text{K}}\right) \][/tex]
[tex]\[ K_{\text{eq}} = \exp\left(\frac{113949.17723372001}{2477.372}\right) \][/tex]
[tex]\[ K_{\text{eq}} = \exp(46.003858) \][/tex]
[tex]\[ K_{\text{eq}} = 9.423061542465036 \times 10^{19} \][/tex]
5. Interpret the Gibbs free energy change [tex]\( \Delta G^\circ \)[/tex]:
Since [tex]\( \Delta G^\circ \)[/tex] is negative [tex]\((-113949.17723372001 \, \text{J/mol})\)[/tex], it indicates that the reaction is spontaneous under standard conditions.
Thus, the equilibrium constant at 298 K is [tex]\( 9.423061542465036 \times 10^{19} \)[/tex], and [tex]\( \Delta G^\circ \)[/tex] for this reaction is less than zero, indicating a spontaneous reaction.
1. Write down the given reduction potentials:
[tex]\[ \begin{aligned} \text{Reduction potential for } & \text{Fe}^{3+}/\text{Fe}^{2+}: & E_{\text{red}}^\circ & = 0.771 \, \text{V} \\ \text{Reduction potential for } & \text{Cr}^{3+}/\text{Cr}^{2+}: & E_{\text{red}}^\circ & = -0.410 \, \text{V} \end{aligned} \][/tex]
2. Determine the standard cell potential [tex]\(E_{\text{cell}}^\circ\)[/tex]:
[tex]\[ E_{\text{cell}}^\circ = E_{\text{red}}^\circ(\text{Fe}^{3+}/\text{Fe}^{2+}) - E_{\text{red}}^\circ(\text{Cr}^{3+}/\text{Cr}^{2+}) \][/tex]
[tex]\[ E_{\text{cell}}^\circ = 0.771 \, \text{V} - (-0.410 \, \text{V}) = 0.771 \, \text{V} + 0.410 \, \text{V} = 1.181 \, \text{V} \][/tex]
3. Calculate the standard Gibbs free energy change [tex]\(\Delta G^\circ\)[/tex]:
The equation relating [tex]\( \Delta G^\circ \)[/tex] and [tex]\( E_{\text{cell}}^\circ \)[/tex] is:
[tex]\[ \Delta G^\circ = -n F E_{\text{cell}}^\circ \][/tex]
Where:
- [tex]\( n \)[/tex] is the number of moles of electrons transferred (in this case, [tex]\( n = 1 \)[/tex]).
- [tex]\( F \)[/tex] is the Faraday constant [tex]\( (96485.33212 \, \text{C/mol}) \)[/tex].
Substituting the values:
[tex]\[ \Delta G^\circ = -(1) \times 96485.33212 \, \text{C/mol} \times 1.181 \, \text{V} \][/tex]
[tex]\[ \Delta G^\circ = -113949.17723372001 \, \text{J/mol} \][/tex]
4. Calculate the equilibrium constant, [tex]\( K_{\text{eq}} \)[/tex]:
The relationship between [tex]\( \Delta G^\circ \)[/tex] and [tex]\( K_{\text{eq}} \)[/tex] is given by:
[tex]\[ \Delta G^\circ = -RT \ln K_{\text{eq}} \][/tex]
Where:
- [tex]\( R \)[/tex] is the gas constant (8.314 J/(mol K)).
- [tex]\( T \)[/tex] is the temperature (298 K).
Rearranging the equation to solve for [tex]\( K_{\text{eq}} \)[/tex]:
[tex]\[ K_{\text{eq}} = \exp\left(\frac{-\Delta G^\circ}{RT}\right) \][/tex]
Substituting the values:
[tex]\[ K_{\text{eq}} = \exp\left(\frac{-(-113949.17723372001 \, \text{J/mol})}{8.314 \, \text{J/(mol K)} \times 298 \, \text{K}}\right) \][/tex]
[tex]\[ K_{\text{eq}} = \exp\left(\frac{113949.17723372001}{2477.372}\right) \][/tex]
[tex]\[ K_{\text{eq}} = \exp(46.003858) \][/tex]
[tex]\[ K_{\text{eq}} = 9.423061542465036 \times 10^{19} \][/tex]
5. Interpret the Gibbs free energy change [tex]\( \Delta G^\circ \)[/tex]:
Since [tex]\( \Delta G^\circ \)[/tex] is negative [tex]\((-113949.17723372001 \, \text{J/mol})\)[/tex], it indicates that the reaction is spontaneous under standard conditions.
Thus, the equilibrium constant at 298 K is [tex]\( 9.423061542465036 \times 10^{19} \)[/tex], and [tex]\( \Delta G^\circ \)[/tex] for this reaction is less than zero, indicating a spontaneous reaction.
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Thanks for visiting IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more helpful information.