Get the answers you've been looking for with the help of IDNLearn.com's expert community. Our community is here to provide detailed and trustworthy answers to any questions you may have.

Use the references to access important values if needed for this question.

Use standard reduction potentials to calculate the equilibrium constant for the reaction:

[tex]\[
\begin{array}{r}
Fe^{3+}(aq) + Cr^{2+}(aq) \rightarrow Fe^{2+}(aq) + Cr^{3+}(aq) \\
\begin{array}{|l|l|}
\hline
Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq) & E_{red}^{\circ} = 0.771\, V \\
\hline
Cr^{3+}(aq) + e^{-} \rightarrow Cr^{2+}(aq) & E_{red}^{\circ} = -0.410\, V \\
\hline
\end{array}
\end{array}
\][/tex]

Hint: Carry at least 5 significant figures during intermediate calculations to avoid round-off error when taking the antilogarithm.

Equilibrium constant at 298 K: [tex]$\square$[/tex]

[tex]$\Delta G^{\circ}$[/tex] for this reaction would be [tex]$\square$[/tex] than zero.


Sagot :

To calculate the equilibrium constant for the given redox reaction and determine the Gibbs free energy change for the reaction, follow these steps:

1. Write down the given reduction potentials:
[tex]\[ \begin{aligned} \text{Reduction potential for } & \text{Fe}^{3+}/\text{Fe}^{2+}: & E_{\text{red}}^\circ & = 0.771 \, \text{V} \\ \text{Reduction potential for } & \text{Cr}^{3+}/\text{Cr}^{2+}: & E_{\text{red}}^\circ & = -0.410 \, \text{V} \end{aligned} \][/tex]

2. Determine the standard cell potential [tex]\(E_{\text{cell}}^\circ\)[/tex]:
[tex]\[ E_{\text{cell}}^\circ = E_{\text{red}}^\circ(\text{Fe}^{3+}/\text{Fe}^{2+}) - E_{\text{red}}^\circ(\text{Cr}^{3+}/\text{Cr}^{2+}) \][/tex]
[tex]\[ E_{\text{cell}}^\circ = 0.771 \, \text{V} - (-0.410 \, \text{V}) = 0.771 \, \text{V} + 0.410 \, \text{V} = 1.181 \, \text{V} \][/tex]

3. Calculate the standard Gibbs free energy change [tex]\(\Delta G^\circ\)[/tex]:

The equation relating [tex]\( \Delta G^\circ \)[/tex] and [tex]\( E_{\text{cell}}^\circ \)[/tex] is:
[tex]\[ \Delta G^\circ = -n F E_{\text{cell}}^\circ \][/tex]
Where:
- [tex]\( n \)[/tex] is the number of moles of electrons transferred (in this case, [tex]\( n = 1 \)[/tex]).
- [tex]\( F \)[/tex] is the Faraday constant [tex]\( (96485.33212 \, \text{C/mol}) \)[/tex].

Substituting the values:
[tex]\[ \Delta G^\circ = -(1) \times 96485.33212 \, \text{C/mol} \times 1.181 \, \text{V} \][/tex]
[tex]\[ \Delta G^\circ = -113949.17723372001 \, \text{J/mol} \][/tex]

4. Calculate the equilibrium constant, [tex]\( K_{\text{eq}} \)[/tex]:

The relationship between [tex]\( \Delta G^\circ \)[/tex] and [tex]\( K_{\text{eq}} \)[/tex] is given by:
[tex]\[ \Delta G^\circ = -RT \ln K_{\text{eq}} \][/tex]
Where:
- [tex]\( R \)[/tex] is the gas constant (8.314 J/(mol K)).
- [tex]\( T \)[/tex] is the temperature (298 K).

Rearranging the equation to solve for [tex]\( K_{\text{eq}} \)[/tex]:
[tex]\[ K_{\text{eq}} = \exp\left(\frac{-\Delta G^\circ}{RT}\right) \][/tex]

Substituting the values:
[tex]\[ K_{\text{eq}} = \exp\left(\frac{-(-113949.17723372001 \, \text{J/mol})}{8.314 \, \text{J/(mol K)} \times 298 \, \text{K}}\right) \][/tex]
[tex]\[ K_{\text{eq}} = \exp\left(\frac{113949.17723372001}{2477.372}\right) \][/tex]
[tex]\[ K_{\text{eq}} = \exp(46.003858) \][/tex]
[tex]\[ K_{\text{eq}} = 9.423061542465036 \times 10^{19} \][/tex]

5. Interpret the Gibbs free energy change [tex]\( \Delta G^\circ \)[/tex]:

Since [tex]\( \Delta G^\circ \)[/tex] is negative [tex]\((-113949.17723372001 \, \text{J/mol})\)[/tex], it indicates that the reaction is spontaneous under standard conditions.

Thus, the equilibrium constant at 298 K is [tex]\( 9.423061542465036 \times 10^{19} \)[/tex], and [tex]\( \Delta G^\circ \)[/tex] for this reaction is less than zero, indicating a spontaneous reaction.