Get the information you need from a community of experts on IDNLearn.com. Get the information you need from our community of experts who provide accurate and comprehensive answers to all your questions.
Sagot :
To identify the unknown halogen, we can follow a step-by-step process using the given data and the ideal gas law. Here's the solution:
### Step 1: Convert Volume to Liters
The volume provided is in milliliters (mL), and we need it in liters (L) for the ideal gas law calculation.
[tex]\[ \text{Volume} = 109 \, \text{mL} \][/tex]
[tex]\[ \text{Volume (L)} = 109 \, \text{mL} \times \frac{1 \, \text{L}}{1000 \, \text{mL}} = 0.109 \, \text{L} \][/tex]
### Step 2: Use Ideal Gas Law to Find Moles ([tex]\( n \)[/tex])
The ideal gas law is given by:
[tex]\[ PV = nRT \][/tex]
Where:
- [tex]\( P \)[/tex] is the pressure (1.41 atm)
- [tex]\( V \)[/tex] is the volume in liters (0.109 L)
- [tex]\( n \)[/tex] is the number of moles of gas
- [tex]\( R \)[/tex] is the universal gas constant (0.0821 L atm / K mol)
- [tex]\( T \)[/tex] is the temperature in Kelvin (398 K)
Rearranging the formula to solve for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{PV}{RT} \][/tex]
Substituting in the values:
[tex]\[ n = \frac{(1.41 \, \text{atm}) (0.109 \, \text{L})}{(0.0821 \, \text{L atm / K mol}) (398 \, \text{K})} \][/tex]
[tex]\[ n = \frac{0.15369 \, \text{atm L}}{32.6558 \, \text{L atm / K mol}} \][/tex]
[tex]\[ n = 0.004703 \, \text{mol} \][/tex]
### Step 3: Calculate the Molar Mass
The molar mass ([tex]\( M \)[/tex]) is found by dividing the mass of the sample by the number of moles:
[tex]\[ M = \frac{\text{mass}}{\text{moles}} \][/tex]
Given:
- Mass of the sample = 1.19 g
- Number of moles = 0.004703 mol
[tex]\[ M = \frac{1.19 \, \text{g}}{0.004703 \, \text{mol}} \][/tex]
[tex]\[ M = 253.004 \, \text{g/mol} \][/tex]
### Step 4: Identify the Halogen
We compare the calculated molar mass with the known molar masses of the halogens:
- Fluorine (F[tex]\(_2\)[/tex]): 37.9968064 g/mol
- Chlorine (Cl[tex]\(_2\)[/tex]): 70.906 g/mol
- Bromine (Br[tex]\(_2\)[/tex]): 159.808 g/mol
- Iodine (I[tex]\(_2\)[/tex]): 253.80894 g/mol
The calculated molar mass (253.004 g/mol) is closest to the molar mass of iodine (253.80894 g/mol).
Thus, the identity of the halogen is:
[tex]\[ \boxed{\text{Iodine}} \][/tex]
### Step 1: Convert Volume to Liters
The volume provided is in milliliters (mL), and we need it in liters (L) for the ideal gas law calculation.
[tex]\[ \text{Volume} = 109 \, \text{mL} \][/tex]
[tex]\[ \text{Volume (L)} = 109 \, \text{mL} \times \frac{1 \, \text{L}}{1000 \, \text{mL}} = 0.109 \, \text{L} \][/tex]
### Step 2: Use Ideal Gas Law to Find Moles ([tex]\( n \)[/tex])
The ideal gas law is given by:
[tex]\[ PV = nRT \][/tex]
Where:
- [tex]\( P \)[/tex] is the pressure (1.41 atm)
- [tex]\( V \)[/tex] is the volume in liters (0.109 L)
- [tex]\( n \)[/tex] is the number of moles of gas
- [tex]\( R \)[/tex] is the universal gas constant (0.0821 L atm / K mol)
- [tex]\( T \)[/tex] is the temperature in Kelvin (398 K)
Rearranging the formula to solve for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{PV}{RT} \][/tex]
Substituting in the values:
[tex]\[ n = \frac{(1.41 \, \text{atm}) (0.109 \, \text{L})}{(0.0821 \, \text{L atm / K mol}) (398 \, \text{K})} \][/tex]
[tex]\[ n = \frac{0.15369 \, \text{atm L}}{32.6558 \, \text{L atm / K mol}} \][/tex]
[tex]\[ n = 0.004703 \, \text{mol} \][/tex]
### Step 3: Calculate the Molar Mass
The molar mass ([tex]\( M \)[/tex]) is found by dividing the mass of the sample by the number of moles:
[tex]\[ M = \frac{\text{mass}}{\text{moles}} \][/tex]
Given:
- Mass of the sample = 1.19 g
- Number of moles = 0.004703 mol
[tex]\[ M = \frac{1.19 \, \text{g}}{0.004703 \, \text{mol}} \][/tex]
[tex]\[ M = 253.004 \, \text{g/mol} \][/tex]
### Step 4: Identify the Halogen
We compare the calculated molar mass with the known molar masses of the halogens:
- Fluorine (F[tex]\(_2\)[/tex]): 37.9968064 g/mol
- Chlorine (Cl[tex]\(_2\)[/tex]): 70.906 g/mol
- Bromine (Br[tex]\(_2\)[/tex]): 159.808 g/mol
- Iodine (I[tex]\(_2\)[/tex]): 253.80894 g/mol
The calculated molar mass (253.004 g/mol) is closest to the molar mass of iodine (253.80894 g/mol).
Thus, the identity of the halogen is:
[tex]\[ \boxed{\text{Iodine}} \][/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com provides the answers you need. Thank you for visiting, and see you next time for more valuable insights.