Solve your doubts and expand your knowledge with IDNLearn.com's extensive Q&A database. Discover in-depth and trustworthy answers to all your questions from our experienced community members.
Sagot :
Certainly! Let's analyze the function [tex]\( g(x) = -\frac{1}{x} - 1 \)[/tex] step by step to answer each part of the question.
### Part (a): Write down the range of [tex]\( f \)[/tex]
To determine the range of [tex]\( g(x) \)[/tex]:
- Consider the term [tex]\(-\frac{1}{x}\)[/tex]. As [tex]\( x \)[/tex] can be any real number except zero, [tex]\(-\frac{1}{x}\)[/tex] can take any real value except zero.
- When [tex]\( x \)[/tex] approaches [tex]\( +\infty \)[/tex] or [tex]\( -\infty \)[/tex], [tex]\(-\frac{1}{x} \)[/tex] approaches 0. Consequently, [tex]\( g(x) = -\frac{1}{x} - 1 \)[/tex] approaches [tex]\(-1\)[/tex].
- Therefore, [tex]\( g(x) \)[/tex] can take any real number except [tex]\(-1\)[/tex].
So, the range of [tex]\( g(x) \)[/tex] is:
[tex]\[ \text{All real numbers except } -1 \][/tex]
### Part (b): Write down the horizontal asymptote of [tex]\( f \)[/tex]
The horizontal asymptote is the value that [tex]\( g(x) \)[/tex] approaches as [tex]\( x \)[/tex] approaches [tex]\( +\infty \)[/tex] or [tex]\( -\infty \)[/tex].
- As [tex]\( x \)[/tex] approaches [tex]\( +\infty \)[/tex] or [tex]\( -\infty \)[/tex], the term [tex]\(-\frac{1}{x} \)[/tex] approaches 0.
- Therefore, [tex]\( g(x) = -\frac{1}{x} - 1 \)[/tex] approaches [tex]\(-1\)[/tex].
So, the horizontal asymptote of [tex]\( g(x) \)[/tex] is:
[tex]\[ -1 \][/tex]
### Part (c): Determine the value of [tex]\( x \)[/tex] for which [tex]\( g(x) < 0 \)[/tex]
We need to find for which values of [tex]\( x \)[/tex] the inequality [tex]\( g(x) < 0 \)[/tex] holds true.
- [tex]\( g(x) < 0 \)[/tex] translates to [tex]\(-\frac{1}{x} - 1 < 0 \)[/tex].
- Rearranging the inequality: [tex]\(-\frac{1}{x} < 1 \)[/tex].
- This simplifies to: [tex]\(\frac{1}{x} > -1 \)[/tex].
Given this inequality:
- If [tex]\( x \)[/tex] is positive, [tex]\(\frac{1}{x}\)[/tex] is positive and always greater than [tex]\(-1\)[/tex].
- So, all positive values of [tex]\( x \)[/tex] will satisfy the inequality.
Thus, the value of [tex]\( x \)[/tex] for which [tex]\( g(x) < 0 \)[/tex] is:
[tex]\[ x > 0 \][/tex]
### Part (d): Write down the equation of [tex]\( h \)[/tex], where [tex]\( h(x) = -g(x) \)[/tex]
Given [tex]\( h(x) = -g(x) \)[/tex] and [tex]\( g(x) = -\frac{1}{x} - 1 \)[/tex], we perform the following calculation:
- [tex]\( g(x) = -\frac{1}{x} - 1 \)[/tex].
- Therefore, [tex]\( -g(x) = -\left(-\frac{1}{x} - 1\right) = \frac{1}{x} + 1 \)[/tex].
So, the equation of [tex]\( h(x) \)[/tex] is:
[tex]\[ h(x) = \frac{1}{x} + 1 \][/tex]
### Part (a): Write down the range of [tex]\( f \)[/tex]
To determine the range of [tex]\( g(x) \)[/tex]:
- Consider the term [tex]\(-\frac{1}{x}\)[/tex]. As [tex]\( x \)[/tex] can be any real number except zero, [tex]\(-\frac{1}{x}\)[/tex] can take any real value except zero.
- When [tex]\( x \)[/tex] approaches [tex]\( +\infty \)[/tex] or [tex]\( -\infty \)[/tex], [tex]\(-\frac{1}{x} \)[/tex] approaches 0. Consequently, [tex]\( g(x) = -\frac{1}{x} - 1 \)[/tex] approaches [tex]\(-1\)[/tex].
- Therefore, [tex]\( g(x) \)[/tex] can take any real number except [tex]\(-1\)[/tex].
So, the range of [tex]\( g(x) \)[/tex] is:
[tex]\[ \text{All real numbers except } -1 \][/tex]
### Part (b): Write down the horizontal asymptote of [tex]\( f \)[/tex]
The horizontal asymptote is the value that [tex]\( g(x) \)[/tex] approaches as [tex]\( x \)[/tex] approaches [tex]\( +\infty \)[/tex] or [tex]\( -\infty \)[/tex].
- As [tex]\( x \)[/tex] approaches [tex]\( +\infty \)[/tex] or [tex]\( -\infty \)[/tex], the term [tex]\(-\frac{1}{x} \)[/tex] approaches 0.
- Therefore, [tex]\( g(x) = -\frac{1}{x} - 1 \)[/tex] approaches [tex]\(-1\)[/tex].
So, the horizontal asymptote of [tex]\( g(x) \)[/tex] is:
[tex]\[ -1 \][/tex]
### Part (c): Determine the value of [tex]\( x \)[/tex] for which [tex]\( g(x) < 0 \)[/tex]
We need to find for which values of [tex]\( x \)[/tex] the inequality [tex]\( g(x) < 0 \)[/tex] holds true.
- [tex]\( g(x) < 0 \)[/tex] translates to [tex]\(-\frac{1}{x} - 1 < 0 \)[/tex].
- Rearranging the inequality: [tex]\(-\frac{1}{x} < 1 \)[/tex].
- This simplifies to: [tex]\(\frac{1}{x} > -1 \)[/tex].
Given this inequality:
- If [tex]\( x \)[/tex] is positive, [tex]\(\frac{1}{x}\)[/tex] is positive and always greater than [tex]\(-1\)[/tex].
- So, all positive values of [tex]\( x \)[/tex] will satisfy the inequality.
Thus, the value of [tex]\( x \)[/tex] for which [tex]\( g(x) < 0 \)[/tex] is:
[tex]\[ x > 0 \][/tex]
### Part (d): Write down the equation of [tex]\( h \)[/tex], where [tex]\( h(x) = -g(x) \)[/tex]
Given [tex]\( h(x) = -g(x) \)[/tex] and [tex]\( g(x) = -\frac{1}{x} - 1 \)[/tex], we perform the following calculation:
- [tex]\( g(x) = -\frac{1}{x} - 1 \)[/tex].
- Therefore, [tex]\( -g(x) = -\left(-\frac{1}{x} - 1\right) = \frac{1}{x} + 1 \)[/tex].
So, the equation of [tex]\( h(x) \)[/tex] is:
[tex]\[ h(x) = \frac{1}{x} + 1 \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your questions find answers at IDNLearn.com. Thanks for visiting, and come back for more accurate and reliable solutions.