Get expert advice and community support for all your questions on IDNLearn.com. Our community is here to provide the comprehensive and accurate answers you need to make informed decisions.

Two exponential functions are shown in the table.

\begin{tabular}{|c|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)=2^x$[/tex] & [tex]$g(x)=\left(\frac{1}{2}\right)^x$[/tex] \\
\hline
2 & 4 & [tex]$\frac{1}{4}$[/tex] \\
\hline
1 & 2 & [tex]$\frac{1}{2}$[/tex] \\
\hline
0 & 1 & 1 \\
\hline
-1 & [tex]$\frac{1}{2}$[/tex] & 2 \\
\hline
-2 & [tex]$\frac{1}{4}$[/tex] & 4 \\
\hline
\end{tabular}

Which conclusion about [tex]$f(x)$[/tex] and [tex]$g(x)$[/tex] can be drawn from the table?

A. The functions [tex]$f(x)$[/tex] and [tex]$g(x)$[/tex] are reflections over the [tex]$x$[/tex] axis.
B. The functions [tex]$f(x)$[/tex] and [tex]$g(x)$[/tex] are reflections over the [tex]$y$[/tex] axis.
C. The function [tex]$f(x)$[/tex] is a decreasing function, and [tex]$g(x)$[/tex] is an increasing function.
D. The function [tex]$f(x)$[/tex] has a greater initial value than [tex]$g(x)$[/tex].


Sagot :

To answer this question, let's analyze the given table of values for the functions [tex]\( f(x) = 2^x \)[/tex] and [tex]\( g(x) = \left(\frac{1}{2}\right)^x \)[/tex]:

[tex]\[ \begin{array}{|c|c|c|} \hline x & f(x)=2^x & g(x)=\left(\frac{1}{2}\right)^x \\ \hline 2 & 4 & \frac{1}{4} \\ \hline 1 & 2 & \frac{1}{2} \\ \hline 0 & 1 & 1 \\ \hline -1 & \frac{1}{2} & 2 \\ \hline -2 & \frac{1}{4} & 4 \\ \hline \end{array} \][/tex]

First, observe that [tex]\( f(x) = 2^x \)[/tex] is an increasing function:
- When [tex]\( x = 2 \)[/tex], [tex]\( f(x) = 4 \)[/tex]
- When [tex]\( x = 1 \)[/tex], [tex]\( f(x) = 2 \)[/tex]
- When [tex]\( x = 0 \)[/tex], [tex]\( f(x) = 1 \)[/tex]
- When [tex]\( x = -1 \)[/tex], [tex]\( f(x) = \frac{1}{2} \)[/tex]
- When [tex]\( x = -2 \)[/tex], [tex]\( f(x) = \frac{1}{4} \)[/tex]

Next, observe that [tex]\( g(x) = \left(\frac{1}{2}\right)^x = 2^{-x} \)[/tex], which is a decreasing function:
- When [tex]\( x = 2 \)[/tex], [tex]\( g(x) = \frac{1}{4} \)[/tex]
- When [tex]\( x = 1 \)[/tex], [tex]\( g(x) = \frac{1}{2} \)[/tex]
- When [tex]\( x = 0 \)[/tex], [tex]\( g(x) = 1 \)[/tex]
- When [tex]\( x = -1 \)[/tex], [tex]\( g(x) = 2 \)[/tex]
- When [tex]\( x = -2 \)[/tex], [tex]\( g(x) = 4 \)[/tex]

If you look closely at the table, you can see that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] have the same values but in reverse order with respect to the [tex]\( y \)[/tex]-axis:
- [tex]\( f(2) = 4 \)[/tex] and [tex]\( g(-2) = 4 \)[/tex]
- [tex]\( f(1) = 2 \)[/tex] and [tex]\( g(-1) = 2 \)[/tex]
- [tex]\( f(0) = 1 \)[/tex] and [tex]\( g(0) = 1 \)[/tex]
- [tex]\( f(-1) = \frac{1}{2} \)[/tex] and [tex]\( g(1) = \frac{1}{2} \)[/tex]
- [tex]\( f(-2) = \frac{1}{4} \)[/tex] and [tex]\( g(2) = \frac{1}{4} \)[/tex]

This relationship shows that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are reflections of each other over the [tex]\( y \)[/tex]-axis. Hence, the correct conclusion is:

The functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are reflections over the [tex]\( y \)[/tex] axis.