Get the answers you've been searching for with IDNLearn.com. Find the information you need quickly and easily with our comprehensive and accurate Q&A platform.
Sagot :
Let's break down the given problem [tex]$y = -x^2 + 6x - 5$[/tex] and find the required aspects step-by-step.
### (a) Determine whether the parabola opens upward or downward:
To determine the direction in which the parabola opens, we look at the coefficient of the [tex]\( x^2 \)[/tex] term, which is the leading coefficient. In this equation, the coefficient of [tex]\( x^2 \)[/tex] is [tex]\(-1\)[/tex], which is negative. Therefore, the parabola opens downward.
### (b) Find the vertex:
The vertex form of a quadratic equation [tex]\(y = ax^2 + bx + c\)[/tex] can be calculated using the formula for the x-coordinate of the vertex [tex]\( x = -\frac{b}{2a} \)[/tex].
For the given equation, we have:
[tex]\[ a = -1, \quad b = 6, \quad c = -5 \][/tex]
Using the vertex formula:
[tex]\[ x_{\text{vertex}} = -\frac{b}{2a} = -\frac{6}{2(-1)} = -\frac{6}{-2} = 3 \][/tex]
Now, plug the x-coordinate of the vertex back into the equation to find the y-coordinate:
[tex]\[ y = -x^2 + 6x - 5 \][/tex]
[tex]\[ y_{\text{vertex}} = -(3)^2 + 6(3) - 5 \][/tex]
[tex]\[ y_{\text{vertex}} = -9 + 18 - 5 = 4 \][/tex]
Thus, the vertex of the parabola is [tex]\( (3.0, 4.0) \)[/tex].
### (c) Find the [tex]\( x \)[/tex]-intercept(s), if possible:
The [tex]\( x \)[/tex]-intercepts are the points where the parabola crosses the [tex]\( x \)[/tex]-axis. This occurs when [tex]\( y = 0 \)[/tex].
Set the equation to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ -x^2 + 6x - 5 = 0 \][/tex]
We solve this quadratic equation using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substitute [tex]\( a = -1 \)[/tex], [tex]\( b = 6 \)[/tex], and [tex]\( c = -5 \)[/tex]:
[tex]\[ x = \frac{-6 \pm \sqrt{(6)^2 - 4(-1)(-5)}}{2(-1)} \][/tex]
[tex]\[ x = \frac{-6 \pm \sqrt{36 - 20}}{-2} \][/tex]
[tex]\[ x = \frac{-6 \pm \sqrt{16}}{-2} \][/tex]
[tex]\[ x = \frac{-6 \pm 4}{-2} \][/tex]
This results in two solutions:
[tex]\[ x_1 = \frac{-6 + 4}{-2} = 1 \][/tex]
[tex]\[ x_2 = \frac{-6 - 4}{-2} = 5 \][/tex]
Thus, the [tex]\( x \)[/tex]-intercepts are [tex]\( (1.0, 0) \)[/tex] and [tex]\( (5.0, 0) \)[/tex].
### (d) Find the [tex]\( y \)[/tex]-intercept(s):
The [tex]\( y \)[/tex]-intercept is the point where the parabola crosses the [tex]\( y \)[/tex]-axis. This occurs when [tex]\( x = 0 \)[/tex].
Substitute [tex]\( x = 0 \)[/tex] into the equation:
[tex]\[ y = -0^2 + 6(0) - 5 \][/tex]
[tex]\[ y = -5 \][/tex]
Thus, the [tex]\( y \)[/tex]-intercept is [tex]\( (0, -5) \)[/tex].
### (e) Sketch the graph:
To sketch the graph of this parabola, we summarize the key points:
- The parabola opens downward.
- The vertex is at [tex]\( (3.0, 4.0) \)[/tex].
- The [tex]\( x \)[/tex]-intercepts are at [tex]\( (1.0, 0) \)[/tex] and [tex]\( (5.0, 0) \)[/tex].
- The [tex]\( y \)[/tex]-intercept is at [tex]\( (0, -5) \)[/tex].
With these points, you can draw a downward-opening parabola that passes through these intercepts and reaches its maximum value at the vertex.
In a coordinate plane, plot the points and draw a smooth curve to represent the parabola. The curve should start from the left, pass through the [tex]\( x \)[/tex]-intercept at [tex]\( (1.0, 0) \)[/tex], reach the peak at the vertex [tex]\( (3.0, 4.0) \)[/tex], and then pass through the [tex]\( x \)[/tex]-intercept at [tex]\( (5.0, 0) \)[/tex] and the [tex]\( y \)[/tex]-intercept at [tex]\( (0, -5) \)[/tex].
### (a) Determine whether the parabola opens upward or downward:
To determine the direction in which the parabola opens, we look at the coefficient of the [tex]\( x^2 \)[/tex] term, which is the leading coefficient. In this equation, the coefficient of [tex]\( x^2 \)[/tex] is [tex]\(-1\)[/tex], which is negative. Therefore, the parabola opens downward.
### (b) Find the vertex:
The vertex form of a quadratic equation [tex]\(y = ax^2 + bx + c\)[/tex] can be calculated using the formula for the x-coordinate of the vertex [tex]\( x = -\frac{b}{2a} \)[/tex].
For the given equation, we have:
[tex]\[ a = -1, \quad b = 6, \quad c = -5 \][/tex]
Using the vertex formula:
[tex]\[ x_{\text{vertex}} = -\frac{b}{2a} = -\frac{6}{2(-1)} = -\frac{6}{-2} = 3 \][/tex]
Now, plug the x-coordinate of the vertex back into the equation to find the y-coordinate:
[tex]\[ y = -x^2 + 6x - 5 \][/tex]
[tex]\[ y_{\text{vertex}} = -(3)^2 + 6(3) - 5 \][/tex]
[tex]\[ y_{\text{vertex}} = -9 + 18 - 5 = 4 \][/tex]
Thus, the vertex of the parabola is [tex]\( (3.0, 4.0) \)[/tex].
### (c) Find the [tex]\( x \)[/tex]-intercept(s), if possible:
The [tex]\( x \)[/tex]-intercepts are the points where the parabola crosses the [tex]\( x \)[/tex]-axis. This occurs when [tex]\( y = 0 \)[/tex].
Set the equation to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ -x^2 + 6x - 5 = 0 \][/tex]
We solve this quadratic equation using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substitute [tex]\( a = -1 \)[/tex], [tex]\( b = 6 \)[/tex], and [tex]\( c = -5 \)[/tex]:
[tex]\[ x = \frac{-6 \pm \sqrt{(6)^2 - 4(-1)(-5)}}{2(-1)} \][/tex]
[tex]\[ x = \frac{-6 \pm \sqrt{36 - 20}}{-2} \][/tex]
[tex]\[ x = \frac{-6 \pm \sqrt{16}}{-2} \][/tex]
[tex]\[ x = \frac{-6 \pm 4}{-2} \][/tex]
This results in two solutions:
[tex]\[ x_1 = \frac{-6 + 4}{-2} = 1 \][/tex]
[tex]\[ x_2 = \frac{-6 - 4}{-2} = 5 \][/tex]
Thus, the [tex]\( x \)[/tex]-intercepts are [tex]\( (1.0, 0) \)[/tex] and [tex]\( (5.0, 0) \)[/tex].
### (d) Find the [tex]\( y \)[/tex]-intercept(s):
The [tex]\( y \)[/tex]-intercept is the point where the parabola crosses the [tex]\( y \)[/tex]-axis. This occurs when [tex]\( x = 0 \)[/tex].
Substitute [tex]\( x = 0 \)[/tex] into the equation:
[tex]\[ y = -0^2 + 6(0) - 5 \][/tex]
[tex]\[ y = -5 \][/tex]
Thus, the [tex]\( y \)[/tex]-intercept is [tex]\( (0, -5) \)[/tex].
### (e) Sketch the graph:
To sketch the graph of this parabola, we summarize the key points:
- The parabola opens downward.
- The vertex is at [tex]\( (3.0, 4.0) \)[/tex].
- The [tex]\( x \)[/tex]-intercepts are at [tex]\( (1.0, 0) \)[/tex] and [tex]\( (5.0, 0) \)[/tex].
- The [tex]\( y \)[/tex]-intercept is at [tex]\( (0, -5) \)[/tex].
With these points, you can draw a downward-opening parabola that passes through these intercepts and reaches its maximum value at the vertex.
In a coordinate plane, plot the points and draw a smooth curve to represent the parabola. The curve should start from the left, pass through the [tex]\( x \)[/tex]-intercept at [tex]\( (1.0, 0) \)[/tex], reach the peak at the vertex [tex]\( (3.0, 4.0) \)[/tex], and then pass through the [tex]\( x \)[/tex]-intercept at [tex]\( (5.0, 0) \)[/tex] and the [tex]\( y \)[/tex]-intercept at [tex]\( (0, -5) \)[/tex].
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. For precise answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.