IDNLearn.com: Your trusted source for accurate and reliable answers. Get thorough and trustworthy answers to your queries from our extensive network of knowledgeable professionals.
Sagot :
Let's tackle each part of the question systematically.
### a) Write down the nth term in this series.
To determine the nth term of the given geometric series, let’s first identify the first term ([tex]\(a\)[/tex]) and the common ratio ([tex]\(r\)[/tex]).
The series is [tex]\(16, 8, 4, \ldots\)[/tex]
- The first term ([tex]\(a\)[/tex]) is 16.
- The common ratio ([tex]\(r\)[/tex]) can be found by dividing the second term by the first term: [tex]\(r = \frac{8}{16} = \frac{1}{2}\)[/tex].
The nth term of a geometric series is given by:
[tex]\[ t_n = a \cdot (r^{n-1}) \][/tex]
Substitute [tex]\(a = 16\)[/tex] and [tex]\(r = \frac{1}{2}\)[/tex]:
[tex]\[ t_n = 16 \cdot \left(\frac{1}{2}\right)^{n-1} \][/tex]
### b) How many terms should be added to get a sum that exceeds 31?
The sum of the first [tex]\(n\)[/tex] terms of a geometric series is given by:
[tex]\[ S_n = a \cdot \frac{1 - r^n}{1 - r} \][/tex]
For our series, [tex]\(a = 16\)[/tex] and [tex]\(r = \frac{1}{2}\)[/tex]. We want to find the smallest [tex]\(n\)[/tex] such that the sum [tex]\(S_n\)[/tex] exceeds 31. This translates into:
[tex]\[ 16 \cdot \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} > 31 \][/tex]
We simplify the denominator:
[tex]\[ 16 \cdot \frac{1 - \left(\frac{1}{2}\right)^n}{\frac{1}{2}} = 32 \cdot (1 - \left(\frac{1}{2}\right)^n) \][/tex]
Now:
[tex]\[ 32 \cdot (1 - \left(\frac{1}{2}\right)^n) > 31 \][/tex]
[tex]\[ 1 - \left(\frac{1}{2}\right)^n > \frac{31}{32} \][/tex]
[tex]\[ \left(\frac{1}{2}\right)^n < \frac{1}{32} \][/tex]
Since [tex]\(\left(\frac{1}{2}\right)^5 = \frac{1}{32}\)[/tex], we find that for [tex]\(n = 6\)[/tex]:
[tex]\[ \left(\frac{1}{2}\right)^6 = \frac{1}{64} \][/tex]
[tex]\[ 1 - \left(\frac{1}{2}\right)^6 > 1 - \frac{1}{32} \][/tex]
So, [tex]\(6\)[/tex] terms are needed to exceed a sum of 31.
### c) Calculate the sum to infinity, if it exists.
The sum to infinity of a geometric series exists if the common ratio [tex]\(r\)[/tex] satisfies [tex]\(|r| < 1\)[/tex].
Given [tex]\(r = \frac{1}{2}\)[/tex], which is indeed less than 1 in absolute value, the sum to infinity, [tex]\(S_\infty\)[/tex], is given by:
[tex]\[ S_\infty = \frac{a}{1 - r} \][/tex]
Substituting [tex]\(a = 16\)[/tex] and [tex]\(r = \frac{1}{2}\)[/tex]:
[tex]\[ S_\infty = \frac{16}{1 - \frac{1}{2}} = \frac{16}{\frac{1}{2}} = 32 \][/tex]
### d) Write the series in Sigma notation.
The geometric series can be expressed in Sigma notation as:
[tex]\[ \sum_{n=1}^{\infty} 16 \left(\frac{1}{2}\right)^{n-1} \][/tex]
In conclusion:
- The nth term of the series is [tex]\( t_n = 16 \left(\frac{1}{2}\right)^{n-1} \)[/tex].
- It takes 6 terms for the sum to exceed 31.
- The sum to infinity is 32.
- The series in Sigma notation is [tex]\( \sum_{n=1}^{\infty} 16 \left(\frac{1}{2}\right)^{n-1} \)[/tex].
### a) Write down the nth term in this series.
To determine the nth term of the given geometric series, let’s first identify the first term ([tex]\(a\)[/tex]) and the common ratio ([tex]\(r\)[/tex]).
The series is [tex]\(16, 8, 4, \ldots\)[/tex]
- The first term ([tex]\(a\)[/tex]) is 16.
- The common ratio ([tex]\(r\)[/tex]) can be found by dividing the second term by the first term: [tex]\(r = \frac{8}{16} = \frac{1}{2}\)[/tex].
The nth term of a geometric series is given by:
[tex]\[ t_n = a \cdot (r^{n-1}) \][/tex]
Substitute [tex]\(a = 16\)[/tex] and [tex]\(r = \frac{1}{2}\)[/tex]:
[tex]\[ t_n = 16 \cdot \left(\frac{1}{2}\right)^{n-1} \][/tex]
### b) How many terms should be added to get a sum that exceeds 31?
The sum of the first [tex]\(n\)[/tex] terms of a geometric series is given by:
[tex]\[ S_n = a \cdot \frac{1 - r^n}{1 - r} \][/tex]
For our series, [tex]\(a = 16\)[/tex] and [tex]\(r = \frac{1}{2}\)[/tex]. We want to find the smallest [tex]\(n\)[/tex] such that the sum [tex]\(S_n\)[/tex] exceeds 31. This translates into:
[tex]\[ 16 \cdot \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} > 31 \][/tex]
We simplify the denominator:
[tex]\[ 16 \cdot \frac{1 - \left(\frac{1}{2}\right)^n}{\frac{1}{2}} = 32 \cdot (1 - \left(\frac{1}{2}\right)^n) \][/tex]
Now:
[tex]\[ 32 \cdot (1 - \left(\frac{1}{2}\right)^n) > 31 \][/tex]
[tex]\[ 1 - \left(\frac{1}{2}\right)^n > \frac{31}{32} \][/tex]
[tex]\[ \left(\frac{1}{2}\right)^n < \frac{1}{32} \][/tex]
Since [tex]\(\left(\frac{1}{2}\right)^5 = \frac{1}{32}\)[/tex], we find that for [tex]\(n = 6\)[/tex]:
[tex]\[ \left(\frac{1}{2}\right)^6 = \frac{1}{64} \][/tex]
[tex]\[ 1 - \left(\frac{1}{2}\right)^6 > 1 - \frac{1}{32} \][/tex]
So, [tex]\(6\)[/tex] terms are needed to exceed a sum of 31.
### c) Calculate the sum to infinity, if it exists.
The sum to infinity of a geometric series exists if the common ratio [tex]\(r\)[/tex] satisfies [tex]\(|r| < 1\)[/tex].
Given [tex]\(r = \frac{1}{2}\)[/tex], which is indeed less than 1 in absolute value, the sum to infinity, [tex]\(S_\infty\)[/tex], is given by:
[tex]\[ S_\infty = \frac{a}{1 - r} \][/tex]
Substituting [tex]\(a = 16\)[/tex] and [tex]\(r = \frac{1}{2}\)[/tex]:
[tex]\[ S_\infty = \frac{16}{1 - \frac{1}{2}} = \frac{16}{\frac{1}{2}} = 32 \][/tex]
### d) Write the series in Sigma notation.
The geometric series can be expressed in Sigma notation as:
[tex]\[ \sum_{n=1}^{\infty} 16 \left(\frac{1}{2}\right)^{n-1} \][/tex]
In conclusion:
- The nth term of the series is [tex]\( t_n = 16 \left(\frac{1}{2}\right)^{n-1} \)[/tex].
- It takes 6 terms for the sum to exceed 31.
- The sum to infinity is 32.
- The series in Sigma notation is [tex]\( \sum_{n=1}^{\infty} 16 \left(\frac{1}{2}\right)^{n-1} \)[/tex].
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Thank you for visiting IDNLearn.com. We’re here to provide accurate and reliable answers, so visit us again soon.