IDNLearn.com: Your one-stop destination for finding reliable answers. Join our Q&A platform to receive prompt and accurate responses from knowledgeable professionals in various fields.
Sagot :
To determine which of the given objects has the highest kinetic energy, we need to calculate the kinetic energy for each object individually. Here’s a detailed step-by-step solution:
1. Cart:
- A 1 kg cart moving at 1 m/s.
- Kinetic energy (KE) is given by the formula:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
- Substituting the values:
[tex]\[ KE = \frac{1}{2} \times 1 \text{ kg} \times (1 \text{ m/s})^2 = 0.5 \text{ J} \][/tex]
2. Solid sphere:
- A 1 kg solid sphere with a radius of 1 m rolling along a track at 1 rad/s.
- The sphere has both translational and rotational kinetic energy.
- Translational kinetic energy:
[tex]\[ KE_{\text{trans}} = \frac{1}{2} m v^2 \][/tex]
Since [tex]\( v = \omega \times r \)[/tex], where [tex]\( \omega = 1 \text{ rad/s} \)[/tex] and [tex]\( r = 1 \text{ m} \)[/tex], we have:
[tex]\[ v = 1 \text{ m/s} \][/tex]
[tex]\[ KE_{\text{trans}} = \frac{1}{2} \times 1 \text{ kg} \times (1 \text{ m/s})^2 = 0.5 \text{ J} \][/tex]
- Rotational kinetic energy:
[tex]\[ KE_{\text{rot}} = \frac{1}{2} I \omega^2 \][/tex]
For a solid sphere, the moment of inertia [tex]\( I \)[/tex] is:
[tex]\[ I = \frac{2}{5} m r^2 = \frac{2}{5} \times 1 \text{ kg} \times (1 \text{ m})^2 = \frac{2}{5} \text{ kg} \cdot \text{m}^2 \][/tex]
[tex]\[ KE_{\text{rot}} = \frac{1}{2} \times \frac{2}{5} \text{ kg} \cdot \text{m}^2 \times (1 \text{ rad/s})^2 = \frac{1}{5} \text{ J} = 0.2 \text{ J} \][/tex]
- Total kinetic energy for the sphere:
[tex]\[ KE_{\text{total}} = KE_{\text{trans}} + KE_{\text{rot}} = 0.5 \text{ J} + 0.2 \text{ J} = 0.7 \text{ J} \][/tex]
3. Cylinder:
- A 1 kg cylinder with a radius of 1 m rolling along a track at 1 rad/s.
- The cylinder has both translational and rotational kinetic energy.
- Translational kinetic energy:
[tex]\[ KE_{\text{trans}} = \frac{1}{2} m v^2 \][/tex]
Since [tex]\( v = \omega \times r \)[/tex], where [tex]\( \omega = 1 \text{ rad/s} \)[/tex] and [tex]\( r = 1 \text{ m} \)[/tex], we have:
[tex]\[ v = 1 \text{ m/s} \][/tex]
[tex]\[ KE_{\text{trans}} = \frac{1}{2} \times 1 \text{ kg} \times (1 \text{ m/s})^2 = 0.5 \text{ J} \][/tex]
- Rotational kinetic energy:
[tex]\[ KE_{\text{rot}} = \frac{1}{2} I \omega^2 \][/tex]
For a cylinder (thin cylindrical shell), the moment of inertia [tex]\( I \)[/tex] is:
[tex]\[ I = m r^2 = 1 \text{ kg} \times (1 \text{ m})^2 = 1 \text{ kg} \cdot \text{m}^2 \][/tex]
[tex]\[ KE_{\text{rot}} = \frac{1}{2} \times 1 \text{ kg} \cdot \text{m}^2 \times (1 \text{ rad/s})^2 = 0.5 \text{ J} \][/tex]
- Total kinetic energy for the cylinder:
[tex]\[ KE_{\text{total}} = KE_{\text{trans}} + KE_{\text{rot}} = 0.5 \text{ J} + 0.5 \text{ J} = 1 \text{ J} \][/tex]
4. Stone:
- A 1 kg stone moving in a circle of radius 1 m at 1 rad/s.
- The kinetic energy for an object moving in a circle is purely translational:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
Since [tex]\( v = \omega \times r \)[/tex], where [tex]\( \omega = 1 \text{ rad/s} \)[/tex] and [tex]\( r = 1 \text{ m} \)[/tex], we have:
[tex]\[ v = 1 \text{ m/s} \][/tex]
[tex]\[ KE = \frac{1}{2} \times 1 \text{ kg} \times (1 \text{ m/s})^2 = 0.5 \text{ J} \][/tex]
By comparing the kinetic energies calculated for each object:
- Cart: 0.5 J
- Solid sphere: 0.7 J
- Cylinder: 1.0 J
- Stone: 0.5 J
The cylinder, with a kinetic energy of 1.0 J, has the highest kinetic energy among the objects listed.
1. Cart:
- A 1 kg cart moving at 1 m/s.
- Kinetic energy (KE) is given by the formula:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
- Substituting the values:
[tex]\[ KE = \frac{1}{2} \times 1 \text{ kg} \times (1 \text{ m/s})^2 = 0.5 \text{ J} \][/tex]
2. Solid sphere:
- A 1 kg solid sphere with a radius of 1 m rolling along a track at 1 rad/s.
- The sphere has both translational and rotational kinetic energy.
- Translational kinetic energy:
[tex]\[ KE_{\text{trans}} = \frac{1}{2} m v^2 \][/tex]
Since [tex]\( v = \omega \times r \)[/tex], where [tex]\( \omega = 1 \text{ rad/s} \)[/tex] and [tex]\( r = 1 \text{ m} \)[/tex], we have:
[tex]\[ v = 1 \text{ m/s} \][/tex]
[tex]\[ KE_{\text{trans}} = \frac{1}{2} \times 1 \text{ kg} \times (1 \text{ m/s})^2 = 0.5 \text{ J} \][/tex]
- Rotational kinetic energy:
[tex]\[ KE_{\text{rot}} = \frac{1}{2} I \omega^2 \][/tex]
For a solid sphere, the moment of inertia [tex]\( I \)[/tex] is:
[tex]\[ I = \frac{2}{5} m r^2 = \frac{2}{5} \times 1 \text{ kg} \times (1 \text{ m})^2 = \frac{2}{5} \text{ kg} \cdot \text{m}^2 \][/tex]
[tex]\[ KE_{\text{rot}} = \frac{1}{2} \times \frac{2}{5} \text{ kg} \cdot \text{m}^2 \times (1 \text{ rad/s})^2 = \frac{1}{5} \text{ J} = 0.2 \text{ J} \][/tex]
- Total kinetic energy for the sphere:
[tex]\[ KE_{\text{total}} = KE_{\text{trans}} + KE_{\text{rot}} = 0.5 \text{ J} + 0.2 \text{ J} = 0.7 \text{ J} \][/tex]
3. Cylinder:
- A 1 kg cylinder with a radius of 1 m rolling along a track at 1 rad/s.
- The cylinder has both translational and rotational kinetic energy.
- Translational kinetic energy:
[tex]\[ KE_{\text{trans}} = \frac{1}{2} m v^2 \][/tex]
Since [tex]\( v = \omega \times r \)[/tex], where [tex]\( \omega = 1 \text{ rad/s} \)[/tex] and [tex]\( r = 1 \text{ m} \)[/tex], we have:
[tex]\[ v = 1 \text{ m/s} \][/tex]
[tex]\[ KE_{\text{trans}} = \frac{1}{2} \times 1 \text{ kg} \times (1 \text{ m/s})^2 = 0.5 \text{ J} \][/tex]
- Rotational kinetic energy:
[tex]\[ KE_{\text{rot}} = \frac{1}{2} I \omega^2 \][/tex]
For a cylinder (thin cylindrical shell), the moment of inertia [tex]\( I \)[/tex] is:
[tex]\[ I = m r^2 = 1 \text{ kg} \times (1 \text{ m})^2 = 1 \text{ kg} \cdot \text{m}^2 \][/tex]
[tex]\[ KE_{\text{rot}} = \frac{1}{2} \times 1 \text{ kg} \cdot \text{m}^2 \times (1 \text{ rad/s})^2 = 0.5 \text{ J} \][/tex]
- Total kinetic energy for the cylinder:
[tex]\[ KE_{\text{total}} = KE_{\text{trans}} + KE_{\text{rot}} = 0.5 \text{ J} + 0.5 \text{ J} = 1 \text{ J} \][/tex]
4. Stone:
- A 1 kg stone moving in a circle of radius 1 m at 1 rad/s.
- The kinetic energy for an object moving in a circle is purely translational:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
Since [tex]\( v = \omega \times r \)[/tex], where [tex]\( \omega = 1 \text{ rad/s} \)[/tex] and [tex]\( r = 1 \text{ m} \)[/tex], we have:
[tex]\[ v = 1 \text{ m/s} \][/tex]
[tex]\[ KE = \frac{1}{2} \times 1 \text{ kg} \times (1 \text{ m/s})^2 = 0.5 \text{ J} \][/tex]
By comparing the kinetic energies calculated for each object:
- Cart: 0.5 J
- Solid sphere: 0.7 J
- Cylinder: 1.0 J
- Stone: 0.5 J
The cylinder, with a kinetic energy of 1.0 J, has the highest kinetic energy among the objects listed.
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! IDNLearn.com is your go-to source for accurate answers. Thanks for stopping by, and come back for more helpful information.