IDNLearn.com is your go-to platform for finding reliable answers quickly. Whether it's a simple query or a complex problem, our community has the answers you need.
Sagot :
To solve the given system of equations:
[tex]\[ \begin{cases} x^2 + y^2 = 4 \\ x - y = 1 \end{cases} \][/tex]
we have to find the coordinates [tex]\((x, y)\)[/tex] that satisfy both equations simultaneously. Let's proceed step-by-step:
1. Equation of the Circle:
[tex]\[ x^2 + y^2 = 4 \][/tex]
This represents a circle with a radius of [tex]\(2\)[/tex] centered at the origin [tex]\((0,0)\)[/tex].
2. Equation of the Line:
[tex]\[ x - y = 1 \][/tex]
This is a straight line with a slope of [tex]\(1\)[/tex] and y-intercept of [tex]\(-1\)[/tex].
To find the intersection points of the circle and the line, we need to solve these equations together.
3. Substitution Method:
From the second equation [tex]\(x - y = 1\)[/tex], we can solve for [tex]\(x\)[/tex] in terms of [tex]\(y\)[/tex]:
[tex]\[ x = y + 1 \][/tex]
4. Substitute [tex]\(x = y + 1\)[/tex] into the first equation [tex]\(x^2 + y^2 = 4\)[/tex]:
[tex]\[ (y + 1)^2 + y^2 = 4 \][/tex]
5. Expand and simplify:
[tex]\[ y^2 + 2y + 1 + y^2 = 4 \][/tex]
[tex]\[ 2y^2 + 2y + 1 = 4 \][/tex]
[tex]\[ 2y^2 + 2y + 1 - 4 = 0 \][/tex]
[tex]\[ 2y^2 + 2y - 3 = 0 \][/tex]
6. Divide through by 2 to simplify:
[tex]\[ y^2 + y - \frac{3}{2} = 0 \][/tex]
7. Solve this quadratic equation for [tex]\(y\)[/tex] using the quadratic formula [tex]\(y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
Here, [tex]\(a = 1\)[/tex], [tex]\(b = 1\)[/tex], and [tex]\(c = -\frac{3}{2}\)[/tex].
[tex]\[ y = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot -\frac{3}{2}}}{2 \cdot 1} \][/tex]
[tex]\[ y = \frac{-1 \pm \sqrt{1 + 6}}{2} \][/tex]
[tex]\[ y = \frac{-1 \pm \sqrt{7}}{2} \][/tex]
8. Therefore, we get two solutions for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{-1 + \sqrt{7}}{2} \quad \text{and} \quad y = \frac{-1 - \sqrt{7}}{2} \][/tex]
9. Now, substitute these [tex]\(y\)[/tex] values back into [tex]\(x = y + 1\)[/tex] to get the corresponding [tex]\(x\)[/tex] values:
[tex]\[ x = \frac{-1 + \sqrt{7}}{2} + 1 = \frac{-1 + \sqrt{7}}{2} + \frac{2}{2} = \frac{1 + \sqrt{7}}{2} \][/tex]
[tex]\[ x = \frac{-1 - \sqrt{7}}{2} + 1 = \frac{-1 - \sqrt{7}}{2} + \frac{2}{2} = \frac{1 - \sqrt{7}}{2} \][/tex]
10. Thus, the solutions for the system of equations are:
[tex]\[ (x, y) = \left( \frac{1 - \sqrt{7}}{2}, \frac{-1 - \sqrt{7}}{2} \right) \quad \text{and} \quad \left( \frac{1 + \sqrt{7}}{2}, \frac{-1 + \sqrt{7}}{2} \right) \][/tex]
These represent the points of intersection between the circle [tex]\(x^2 + y^2 = 4\)[/tex] and the line [tex]\(x - y = 1\)[/tex].
[tex]\[ \begin{cases} x^2 + y^2 = 4 \\ x - y = 1 \end{cases} \][/tex]
we have to find the coordinates [tex]\((x, y)\)[/tex] that satisfy both equations simultaneously. Let's proceed step-by-step:
1. Equation of the Circle:
[tex]\[ x^2 + y^2 = 4 \][/tex]
This represents a circle with a radius of [tex]\(2\)[/tex] centered at the origin [tex]\((0,0)\)[/tex].
2. Equation of the Line:
[tex]\[ x - y = 1 \][/tex]
This is a straight line with a slope of [tex]\(1\)[/tex] and y-intercept of [tex]\(-1\)[/tex].
To find the intersection points of the circle and the line, we need to solve these equations together.
3. Substitution Method:
From the second equation [tex]\(x - y = 1\)[/tex], we can solve for [tex]\(x\)[/tex] in terms of [tex]\(y\)[/tex]:
[tex]\[ x = y + 1 \][/tex]
4. Substitute [tex]\(x = y + 1\)[/tex] into the first equation [tex]\(x^2 + y^2 = 4\)[/tex]:
[tex]\[ (y + 1)^2 + y^2 = 4 \][/tex]
5. Expand and simplify:
[tex]\[ y^2 + 2y + 1 + y^2 = 4 \][/tex]
[tex]\[ 2y^2 + 2y + 1 = 4 \][/tex]
[tex]\[ 2y^2 + 2y + 1 - 4 = 0 \][/tex]
[tex]\[ 2y^2 + 2y - 3 = 0 \][/tex]
6. Divide through by 2 to simplify:
[tex]\[ y^2 + y - \frac{3}{2} = 0 \][/tex]
7. Solve this quadratic equation for [tex]\(y\)[/tex] using the quadratic formula [tex]\(y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
Here, [tex]\(a = 1\)[/tex], [tex]\(b = 1\)[/tex], and [tex]\(c = -\frac{3}{2}\)[/tex].
[tex]\[ y = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot -\frac{3}{2}}}{2 \cdot 1} \][/tex]
[tex]\[ y = \frac{-1 \pm \sqrt{1 + 6}}{2} \][/tex]
[tex]\[ y = \frac{-1 \pm \sqrt{7}}{2} \][/tex]
8. Therefore, we get two solutions for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{-1 + \sqrt{7}}{2} \quad \text{and} \quad y = \frac{-1 - \sqrt{7}}{2} \][/tex]
9. Now, substitute these [tex]\(y\)[/tex] values back into [tex]\(x = y + 1\)[/tex] to get the corresponding [tex]\(x\)[/tex] values:
[tex]\[ x = \frac{-1 + \sqrt{7}}{2} + 1 = \frac{-1 + \sqrt{7}}{2} + \frac{2}{2} = \frac{1 + \sqrt{7}}{2} \][/tex]
[tex]\[ x = \frac{-1 - \sqrt{7}}{2} + 1 = \frac{-1 - \sqrt{7}}{2} + \frac{2}{2} = \frac{1 - \sqrt{7}}{2} \][/tex]
10. Thus, the solutions for the system of equations are:
[tex]\[ (x, y) = \left( \frac{1 - \sqrt{7}}{2}, \frac{-1 - \sqrt{7}}{2} \right) \quad \text{and} \quad \left( \frac{1 + \sqrt{7}}{2}, \frac{-1 + \sqrt{7}}{2} \right) \][/tex]
These represent the points of intersection between the circle [tex]\(x^2 + y^2 = 4\)[/tex] and the line [tex]\(x - y = 1\)[/tex].
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Thanks for visiting IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more helpful information.