Uncover valuable information and solutions with IDNLearn.com's extensive Q&A platform. Our Q&A platform offers reliable and thorough answers to help you make informed decisions quickly and easily.
Sagot :
To solve the quadratic equation [tex]\(4x^2 - 3x + 9 = 2x + 1\)[/tex] using the quadratic formula, follow these detailed steps:
### Step 1: Simplify and Rearrange the Equation
Firstly, the given equation:
[tex]\[4x^2 - 3x + 9 = 2x + 1\][/tex]
needs to be rearranged to standard quadratic form [tex]\(ax^2 + bx + c = 0\)[/tex].
Subtract [tex]\(2x + 1\)[/tex] from both sides to get:
[tex]\[4x^2 - 3x + 9 - 2x - 1 = 0\][/tex]
Combine like terms:
[tex]\[4x^2 - 5x + 8 = 0\][/tex]
### Step 2: Identify Coefficients
The standard quadratic equation is [tex]\(ax^2 + bx + c = 0\)[/tex]. From the rearranged equation:
[tex]\[4x^2 - 5x + 8 = 0\][/tex]
we identify:
[tex]\[a = 4\][/tex]
[tex]\[b = -5\][/tex]
[tex]\[c = 8\][/tex]
### Step 3: Calculate the Discriminant
The quadratic formula is given by:
[tex]\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\][/tex]
First, compute the discriminant [tex]\(\Delta = b^2 - 4ac\)[/tex]:
[tex]\[\Delta = (-5)^2 - 4 \cdot 4 \cdot 8 = 25 - 128 = -103\][/tex]
### Step 4: Evaluate the Square Root of the Discriminant
Since the discriminant is negative ([tex]\(\Delta = -103\)[/tex]), we have complex roots:
[tex]\[\sqrt{\Delta} = \sqrt{-103} = i\sqrt{103}\][/tex]
### Step 5: Apply the Quadratic Formula
Substitute [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(\sqrt{\Delta}\)[/tex] into the quadratic formula:
[tex]\[x = \frac{-(-5) \pm i\sqrt{103}}{2 \cdot 4} = \frac{5 \pm i\sqrt{103}}{8}\][/tex]
### Conclusion
Thus, the solutions to the equation [tex]\(4x^2 - 3x + 9 = 2x + 1\)[/tex] are:
[tex]\[ x = \frac{5 \pm i \sqrt{103}}{8} \][/tex]
Therefore, the correct option is:
[tex]\[ \boxed{\frac{5 \pm \sqrt{103} i}{8}} \][/tex]
### Step 1: Simplify and Rearrange the Equation
Firstly, the given equation:
[tex]\[4x^2 - 3x + 9 = 2x + 1\][/tex]
needs to be rearranged to standard quadratic form [tex]\(ax^2 + bx + c = 0\)[/tex].
Subtract [tex]\(2x + 1\)[/tex] from both sides to get:
[tex]\[4x^2 - 3x + 9 - 2x - 1 = 0\][/tex]
Combine like terms:
[tex]\[4x^2 - 5x + 8 = 0\][/tex]
### Step 2: Identify Coefficients
The standard quadratic equation is [tex]\(ax^2 + bx + c = 0\)[/tex]. From the rearranged equation:
[tex]\[4x^2 - 5x + 8 = 0\][/tex]
we identify:
[tex]\[a = 4\][/tex]
[tex]\[b = -5\][/tex]
[tex]\[c = 8\][/tex]
### Step 3: Calculate the Discriminant
The quadratic formula is given by:
[tex]\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\][/tex]
First, compute the discriminant [tex]\(\Delta = b^2 - 4ac\)[/tex]:
[tex]\[\Delta = (-5)^2 - 4 \cdot 4 \cdot 8 = 25 - 128 = -103\][/tex]
### Step 4: Evaluate the Square Root of the Discriminant
Since the discriminant is negative ([tex]\(\Delta = -103\)[/tex]), we have complex roots:
[tex]\[\sqrt{\Delta} = \sqrt{-103} = i\sqrt{103}\][/tex]
### Step 5: Apply the Quadratic Formula
Substitute [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(\sqrt{\Delta}\)[/tex] into the quadratic formula:
[tex]\[x = \frac{-(-5) \pm i\sqrt{103}}{2 \cdot 4} = \frac{5 \pm i\sqrt{103}}{8}\][/tex]
### Conclusion
Thus, the solutions to the equation [tex]\(4x^2 - 3x + 9 = 2x + 1\)[/tex] are:
[tex]\[ x = \frac{5 \pm i \sqrt{103}}{8} \][/tex]
Therefore, the correct option is:
[tex]\[ \boxed{\frac{5 \pm \sqrt{103} i}{8}} \][/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. IDNLearn.com is your reliable source for accurate answers. Thank you for visiting, and we hope to assist you again.