Get detailed and accurate responses to your questions with IDNLearn.com. Get comprehensive and trustworthy answers to all your questions from our knowledgeable community members.
Sagot :
Let's solve the problem step-by-step to find the total charge contained in a non-conducting cylindrical shell with the given charge density.
1. Understanding the Geometry:
- Inner radius of the cylindrical shell: [tex]\( r_{\text{inner}} = \frac{R}{2} \)[/tex]
- Outer radius of the cylindrical shell: [tex]\( r_{\text{outer}} = R \)[/tex]
- Length of the shell: [tex]\( L \)[/tex]
2. Given Charge Density:
- The charge density as a function of radial distance [tex]\( r \)[/tex] is [tex]\( \rho(r) = \frac{3}{r^2} \)[/tex].
3. Formula for Total Charge:
- To find the total charge [tex]\( Q \)[/tex] inside the shell, we need to integrate the charge density over the shell's volume. Since we have a cylindrical shell, we use cylindrical coordinates.
- The volume element in cylindrical coordinates [tex]\( dV \)[/tex] is [tex]\( 2 \pi r L \, dr \)[/tex], where [tex]\( 2 \pi r \)[/tex] is the circumference at a radius [tex]\( r \)[/tex] and [tex]\( L \)[/tex] is the length.
- Therefore, the total charge [tex]\( Q \)[/tex] can be expressed as:
[tex]\[ Q = \int_{r_{\text{inner}}}^{r_{\text{outer}}} \rho(r) \cdot 2 \pi r L \, dr \][/tex]
4. Substitute the Given Values:
- Substitute [tex]\( \rho(r) = \frac{3}{r^2} \)[/tex], [tex]\( r_{\text{inner}} = \frac{R}{2} \)[/tex], and [tex]\( r_{\text{outer}} = R \)[/tex] into the integral.
[tex]\[ Q = \int_{\frac{R}{2}}^{R} \frac{3}{r^2} \cdot 2 \pi r L \, dr \][/tex]
- Simplify the integrand:
[tex]\[ Q = 6 \pi L \int_{\frac{R}{2}}^{R} \frac{1}{r} \, dr \][/tex]
5. Evaluate the Integral:
- The integral [tex]\( \int \frac{1}{r} \, dr \)[/tex] is a standard integral that evaluates to [tex]\( \ln(r) \)[/tex].
[tex]\[ Q = 6 \pi L \left[ \ln(r) \right]_{\frac{R}{2}}^{R} \][/tex]
- Evaluate the definite integral:
[tex]\[ Q = 6 \pi L \left( \ln(R) - \ln\left(\frac{R}{2}\right) \right) \][/tex]
- Simplify the logarithmic expression:
[tex]\[ \ln(R) - \ln\left(\frac{R}{2}\right) = \ln\left(\frac{R}{R/2}\right) = \ln(2) \][/tex]
- Thus, the total charge:
[tex]\[ Q = 6 \pi L \ln(2) \][/tex]
6. Compare with the Given Options:
- (A) [tex]\( 4 \pi L \ln 2 \)[/tex]
- (B) [tex]\( 6 \pi L \ln 2 \)[/tex]
- (C) [tex]\( 6 \pi R^2 L \)[/tex]
- (D) [tex]\( \frac{2 \pi L}{R^2} \)[/tex]
- (E) Answer is not any of those listed.
From the above calculations, the best expression for the total charge contained in the shell is [tex]\( 6 \pi L \ln(2) \)[/tex]. Thus, the correct answer is (B).
1. Understanding the Geometry:
- Inner radius of the cylindrical shell: [tex]\( r_{\text{inner}} = \frac{R}{2} \)[/tex]
- Outer radius of the cylindrical shell: [tex]\( r_{\text{outer}} = R \)[/tex]
- Length of the shell: [tex]\( L \)[/tex]
2. Given Charge Density:
- The charge density as a function of radial distance [tex]\( r \)[/tex] is [tex]\( \rho(r) = \frac{3}{r^2} \)[/tex].
3. Formula for Total Charge:
- To find the total charge [tex]\( Q \)[/tex] inside the shell, we need to integrate the charge density over the shell's volume. Since we have a cylindrical shell, we use cylindrical coordinates.
- The volume element in cylindrical coordinates [tex]\( dV \)[/tex] is [tex]\( 2 \pi r L \, dr \)[/tex], where [tex]\( 2 \pi r \)[/tex] is the circumference at a radius [tex]\( r \)[/tex] and [tex]\( L \)[/tex] is the length.
- Therefore, the total charge [tex]\( Q \)[/tex] can be expressed as:
[tex]\[ Q = \int_{r_{\text{inner}}}^{r_{\text{outer}}} \rho(r) \cdot 2 \pi r L \, dr \][/tex]
4. Substitute the Given Values:
- Substitute [tex]\( \rho(r) = \frac{3}{r^2} \)[/tex], [tex]\( r_{\text{inner}} = \frac{R}{2} \)[/tex], and [tex]\( r_{\text{outer}} = R \)[/tex] into the integral.
[tex]\[ Q = \int_{\frac{R}{2}}^{R} \frac{3}{r^2} \cdot 2 \pi r L \, dr \][/tex]
- Simplify the integrand:
[tex]\[ Q = 6 \pi L \int_{\frac{R}{2}}^{R} \frac{1}{r} \, dr \][/tex]
5. Evaluate the Integral:
- The integral [tex]\( \int \frac{1}{r} \, dr \)[/tex] is a standard integral that evaluates to [tex]\( \ln(r) \)[/tex].
[tex]\[ Q = 6 \pi L \left[ \ln(r) \right]_{\frac{R}{2}}^{R} \][/tex]
- Evaluate the definite integral:
[tex]\[ Q = 6 \pi L \left( \ln(R) - \ln\left(\frac{R}{2}\right) \right) \][/tex]
- Simplify the logarithmic expression:
[tex]\[ \ln(R) - \ln\left(\frac{R}{2}\right) = \ln\left(\frac{R}{R/2}\right) = \ln(2) \][/tex]
- Thus, the total charge:
[tex]\[ Q = 6 \pi L \ln(2) \][/tex]
6. Compare with the Given Options:
- (A) [tex]\( 4 \pi L \ln 2 \)[/tex]
- (B) [tex]\( 6 \pi L \ln 2 \)[/tex]
- (C) [tex]\( 6 \pi R^2 L \)[/tex]
- (D) [tex]\( \frac{2 \pi L}{R^2} \)[/tex]
- (E) Answer is not any of those listed.
From the above calculations, the best expression for the total charge contained in the shell is [tex]\( 6 \pi L \ln(2) \)[/tex]. Thus, the correct answer is (B).
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your search for answers ends at IDNLearn.com. Thanks for visiting, and we look forward to helping you again soon.