Get detailed and reliable answers to your questions on IDNLearn.com. Ask your questions and receive detailed and reliable answers from our experienced and knowledgeable community members.

At what temperature is the following reaction feasible: [tex]CaCO_3 \rightarrow CaO + CO_2[/tex]?

Enthalpy data:
[tex]
\begin{array}{l}
CaCO_3: -1207 \, \text{kJ/mol} \\
CaO: -635 \, \text{kJ/mol} \\
CO_2: -394 \, \text{kJ/mol}
\end{array}
[/tex]

Entropy data:
[tex]
\begin{array}{l}
CaCO_3: +93 \, \text{J/K mol} \\
CaO: +40 \, \text{J/K mol} \\
CO_2: +214 \, \text{J/K mol}
\end{array}
[/tex]

A. 17 K
B. 1780 K
C. 1.1 K
D. 1105.6 K


Sagot :

To determine at what temperature the reaction [tex]\( \text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2 \)[/tex] is feasible, we need to analyze the thermodynamic properties of the reaction. We will use the Gibbs free energy equation [tex]\( \Delta G = \Delta H - T \Delta S \)[/tex]. For the reaction to be feasible, [tex]\( \Delta G \)[/tex] must be zero, which gives us the condition:

[tex]\[ T = \frac{\Delta H}{\Delta S} \][/tex]

Here's the step-by-step solution:

### Step 1: Calculate the Change in Enthalpy ([tex]\(\Delta H\)[/tex])
The change in enthalpy for the reaction is given by:
[tex]\[ \Delta H_{\text{reaction}} = \left(\Delta H_{\text{CaO}} + \Delta H_{\text{CO}_2} \right) - \Delta H_{\text{CaCO}_3} \][/tex]

Given data in kJ/mol:
[tex]\[ \begin{array}{l} \Delta H_{\text{CaCO}_3} = -1207 \, \text{kJ/mol} \\ \Delta H_{\text{CaO}} = -635 \, \text{kJ/mol} \\ \Delta H_{\text{CO}_2} = -394 \, \text{kJ/mol} \end{array} \][/tex]

Plugging in the values:
[tex]\[ \Delta H_{\text{reaction}} = \left( -635 + (-394) \right) - (-1207) \][/tex]
[tex]\[ = -1029 + 1207 \][/tex]
[tex]\[ = 178 \, \text{kJ/mol} \][/tex]

### Step 2: Calculate the Change in Entropy ([tex]\(\Delta S\)[/tex])
The change in entropy for the reaction is given by:
[tex]\[ \Delta S_{\text{reaction}} = \left(\Delta S_{\text{CaO}} + \Delta S_{\text{CO}_2} \right) - \Delta S_{\text{CaCO}_3} \][/tex]

Given data in J/K mol:
[tex]\[ \begin{array}{l} \Delta S_{\text{CaCO}_3} = 93 \, \text{J/K mol} \\ \Delta S_{\text{CaO}} = 40 \, \text{J/K mol} \\ \Delta S_{\text{CO}_2} = 214 \, \text{J/K mol} \end{array} \][/tex]

Plugging in the values:
[tex]\[ \Delta S_{\text{reaction}} = \left( 40 + 214 \right) - 93 \][/tex]
[tex]\[ = 254 - 93 \][/tex]
[tex]\[ = 161 \, \text{J/K mol} \][/tex]

Convert [tex]\(\Delta S_{\text{reaction}}\)[/tex] to kJ/K mol by dividing by 1000:
[tex]\[ \Delta S_{\text{reaction}} = \frac{161}{1000} = 0.161 \, \text{kJ/K mol} \][/tex]

### Step 3: Calculate the Temperature (T) at which [tex]\(\Delta G = 0\)[/tex]
[tex]\[ T = \frac{\Delta H_{\text{reaction}}}{\Delta S_{\text{reaction}}} \][/tex]

Plugging in the values:
[tex]\[ T = \frac{178}{0.161} \][/tex]

[tex]\[ T \approx 1105.6 \, \text{K} \][/tex]

Thus, the temperature at which the reaction [tex]\( \text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2 \)[/tex] is feasible is:
[tex]\[ \boxed{1105.6 \, \text{K}} \][/tex]

So the correct answer is:
D. 1105.6 K