IDNLearn.com provides a user-friendly platform for finding answers to your questions. Ask anything and receive thorough, reliable answers from our community of experienced professionals.
Sagot :
To determine which function is increasing on the interval [tex]\((-\infty, \infty)\)[/tex], we need to examine the behavior of the derivative of each function. A function is increasing on an interval if its derivative is positive over that entire interval. Let's analyze each function one by one.
### Option A: [tex]\( h(x) = 2^x - 1 \)[/tex]
- Derivative: The derivative of [tex]\( h(x) \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\( h'(x) = \frac{d}{dx}(2^x - 1) \)[/tex].
- Calculation:
[tex]\[ h'(x) = \frac{d}{dx}(2^x) = 2^x \ln(2) \][/tex]
- Behavior: Since [tex]\( 2^x \)[/tex] is always positive for all [tex]\( x \)[/tex] and [tex]\( \ln(2) \)[/tex] is a positive constant, [tex]\( h'(x) \)[/tex] is always positive.
### Option B: [tex]\( f(x) = -3x + 7 \)[/tex]
- Derivative: The derivative of [tex]\( f(x) \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\( f'(x) = \frac{d}{dx}(-3x + 7) \)[/tex].
- Calculation:
[tex]\[ f'(x) = -3 \][/tex]
- Behavior: Since [tex]\( f'(x) = -3 \)[/tex] is constant and negative, the function [tex]\( f(x) \)[/tex] is always decreasing.
### Option C: [tex]\( j(x) = x^2 + 8x + 1 \)[/tex]
- Derivative: The derivative of [tex]\( j(x) \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\( j'(x) = \frac{d}{dx}(x^2 + 8x + 1) \)[/tex].
- Calculation:
[tex]\[ j'(x) = 2x + 8 \][/tex]
- Behavior: The expression [tex]\( 2x + 8 \)[/tex] depends on [tex]\( x \)[/tex]. For [tex]\( x < -4 \)[/tex], [tex]\( j'(x) \)[/tex] is negative, and for [tex]\( x > -4 \)[/tex], [tex]\( j'(x) \)[/tex] is positive. Thus, [tex]\( j(x) \)[/tex] is not increasing over the entire interval [tex]\((-\infty, \infty)\)[/tex].
### Option D: [tex]\( g(x) = -4(2^x) \)[/tex]
- Derivative: The derivative of [tex]\( g(x) \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\( g'(x) = \frac{d}{dx}(-4(2^x)) \)[/tex].
- Calculation:
[tex]\[ g'(x) = -4 \cdot \frac{d}{dx}(2^x) = -4 \cdot 2^x \ln(2) \][/tex]
- Behavior: Since [tex]\( 2^x \)[/tex] is always positive for all [tex]\( x \)[/tex] and [tex]\( \ln(2) \)[/tex] is a positive constant, [tex]\( g'(x) = -4 \cdot 2^x \ln(2) \)[/tex] is always negative.
### Conclusion:
After analysing the derivatives of all the given functions, we find that:
- [tex]\( h'(x) = 2^x \ln(2) \)[/tex] is always positive.
- [tex]\( f'(x) = -3 \)[/tex] is always negative.
- [tex]\( j'(x) = 2x + 8 \)[/tex] changes sign depending on [tex]\( x \)[/tex].
- [tex]\( g'(x) = -4 \cdot 2^x \ln(2) \)[/tex] is always negative.
Therefore, the function that is increasing on the interval [tex]\((-\infty, \infty)\)[/tex] is:
Option A: [tex]\( h(x) = 2^x - 1 \)[/tex]
Correct Answer: A. [tex]\( h(x) = 2^x - 1 \)[/tex]
### Option A: [tex]\( h(x) = 2^x - 1 \)[/tex]
- Derivative: The derivative of [tex]\( h(x) \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\( h'(x) = \frac{d}{dx}(2^x - 1) \)[/tex].
- Calculation:
[tex]\[ h'(x) = \frac{d}{dx}(2^x) = 2^x \ln(2) \][/tex]
- Behavior: Since [tex]\( 2^x \)[/tex] is always positive for all [tex]\( x \)[/tex] and [tex]\( \ln(2) \)[/tex] is a positive constant, [tex]\( h'(x) \)[/tex] is always positive.
### Option B: [tex]\( f(x) = -3x + 7 \)[/tex]
- Derivative: The derivative of [tex]\( f(x) \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\( f'(x) = \frac{d}{dx}(-3x + 7) \)[/tex].
- Calculation:
[tex]\[ f'(x) = -3 \][/tex]
- Behavior: Since [tex]\( f'(x) = -3 \)[/tex] is constant and negative, the function [tex]\( f(x) \)[/tex] is always decreasing.
### Option C: [tex]\( j(x) = x^2 + 8x + 1 \)[/tex]
- Derivative: The derivative of [tex]\( j(x) \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\( j'(x) = \frac{d}{dx}(x^2 + 8x + 1) \)[/tex].
- Calculation:
[tex]\[ j'(x) = 2x + 8 \][/tex]
- Behavior: The expression [tex]\( 2x + 8 \)[/tex] depends on [tex]\( x \)[/tex]. For [tex]\( x < -4 \)[/tex], [tex]\( j'(x) \)[/tex] is negative, and for [tex]\( x > -4 \)[/tex], [tex]\( j'(x) \)[/tex] is positive. Thus, [tex]\( j(x) \)[/tex] is not increasing over the entire interval [tex]\((-\infty, \infty)\)[/tex].
### Option D: [tex]\( g(x) = -4(2^x) \)[/tex]
- Derivative: The derivative of [tex]\( g(x) \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\( g'(x) = \frac{d}{dx}(-4(2^x)) \)[/tex].
- Calculation:
[tex]\[ g'(x) = -4 \cdot \frac{d}{dx}(2^x) = -4 \cdot 2^x \ln(2) \][/tex]
- Behavior: Since [tex]\( 2^x \)[/tex] is always positive for all [tex]\( x \)[/tex] and [tex]\( \ln(2) \)[/tex] is a positive constant, [tex]\( g'(x) = -4 \cdot 2^x \ln(2) \)[/tex] is always negative.
### Conclusion:
After analysing the derivatives of all the given functions, we find that:
- [tex]\( h'(x) = 2^x \ln(2) \)[/tex] is always positive.
- [tex]\( f'(x) = -3 \)[/tex] is always negative.
- [tex]\( j'(x) = 2x + 8 \)[/tex] changes sign depending on [tex]\( x \)[/tex].
- [tex]\( g'(x) = -4 \cdot 2^x \ln(2) \)[/tex] is always negative.
Therefore, the function that is increasing on the interval [tex]\((-\infty, \infty)\)[/tex] is:
Option A: [tex]\( h(x) = 2^x - 1 \)[/tex]
Correct Answer: A. [tex]\( h(x) = 2^x - 1 \)[/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. For precise answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.