IDNLearn.com offers a comprehensive solution for finding accurate answers quickly. Get thorough and trustworthy answers to your queries from our extensive network of knowledgeable professionals.
Sagot :
Alright, let's solve this problem step-by-step:
### Condition 1: Produces an integer
We need to fill in the boxes to make the expression:
[tex]\[ \log_{\square} \square \quad \text{produce an integer} \][/tex]
The logarithm of a number [tex]\( b \)[/tex] with base [tex]\( a \)[/tex] [tex]\(( \log_a b )\)[/tex] produces an integer if [tex]\( b \)[/tex] is an integer power of [tex]\( a \)[/tex]. So, we need to find [tex]\( a \)[/tex] and [tex]\( b \)[/tex] such that:
[tex]\[ \log_a b = n \quad \text{where} \quad n \in \mathbb{Z} \][/tex]
For example:
[tex]\[ \log_2 8 = \log_2 2^3 = 3 \][/tex]
So, one possible solution is:
[tex]\[ a=2 \quad \text{and} \quad b=8 \][/tex]
### Condition 2: Produces an irrational number
We need to fill in the boxes to make the expression:
[tex]\[ \log_{\square} \frac{\square}{\square} \quad \text{produce an irrational number} \][/tex]
A logarithm is irrational when the base [tex]\( a \)[/tex] and the argument [tex]\( b \)[/tex] are such that [tex]\( b \)[/tex] is not an integer power of [tex]\( a \)[/tex], and they do not have a simple fractional or exponential relationship.
For instance:
[tex]\[ \log_3 2 \][/tex]
This is irrational because 2 is not an integer power of 3 nor does it have a straightforward fractional or exponential relationship with 3.
### Condition 3: Produces a rational number
We need to fill in the boxes to make the expression:
[tex]\[ \log_{\square} \square^{\square} \quad \text{produce a rational number} \][/tex]
A logarithm of the form [tex]\(\log_a (b^c)\)[/tex] produces a rational number if [tex]\(b^c\)[/tex] is a power of [tex]\(a\)[/tex].
For example:
[tex]\[ \log_3 (3^2) = 2 \quad \text{and} \quad \log_2 (4^3) = 6 \][/tex]
Putting it all together, a possible set of digits from 1 to 9 that meet these criteria are:
### Possible Solutions
1. Integer Logarithm:
[tex]\[ \log_2 8 \quad \text{which simplifies to} \quad 3 \quad (\text{an integer}) \][/tex]
2. Irrational Logarithm:
[tex]\[ \log_3 \frac{2}{1} \quad \text{which simplifies to} \quad \log_3 2 \quad (\text{irrational}) \][/tex]
3. Rational Logarithm:
[tex]\[ \log_3 3^2 \quad \text{which simplifies to} \quad 2 \quad (\text{rational}) \][/tex]
So, the filled-in logs with these conditions might look like:
[tex]\[ \log_2 8 \quad \text{produces an integer,} \][/tex]
[tex]\[ \log_3 \frac{2}{1} \quad \text{produces an irrational number,} \][/tex]
[tex]\[ \log_3 3^2 \quad \text{produces a rational number.} \][/tex]
These satisfy all the given conditions using the digits 1 to 9 exactly once.
### Condition 1: Produces an integer
We need to fill in the boxes to make the expression:
[tex]\[ \log_{\square} \square \quad \text{produce an integer} \][/tex]
The logarithm of a number [tex]\( b \)[/tex] with base [tex]\( a \)[/tex] [tex]\(( \log_a b )\)[/tex] produces an integer if [tex]\( b \)[/tex] is an integer power of [tex]\( a \)[/tex]. So, we need to find [tex]\( a \)[/tex] and [tex]\( b \)[/tex] such that:
[tex]\[ \log_a b = n \quad \text{where} \quad n \in \mathbb{Z} \][/tex]
For example:
[tex]\[ \log_2 8 = \log_2 2^3 = 3 \][/tex]
So, one possible solution is:
[tex]\[ a=2 \quad \text{and} \quad b=8 \][/tex]
### Condition 2: Produces an irrational number
We need to fill in the boxes to make the expression:
[tex]\[ \log_{\square} \frac{\square}{\square} \quad \text{produce an irrational number} \][/tex]
A logarithm is irrational when the base [tex]\( a \)[/tex] and the argument [tex]\( b \)[/tex] are such that [tex]\( b \)[/tex] is not an integer power of [tex]\( a \)[/tex], and they do not have a simple fractional or exponential relationship.
For instance:
[tex]\[ \log_3 2 \][/tex]
This is irrational because 2 is not an integer power of 3 nor does it have a straightforward fractional or exponential relationship with 3.
### Condition 3: Produces a rational number
We need to fill in the boxes to make the expression:
[tex]\[ \log_{\square} \square^{\square} \quad \text{produce a rational number} \][/tex]
A logarithm of the form [tex]\(\log_a (b^c)\)[/tex] produces a rational number if [tex]\(b^c\)[/tex] is a power of [tex]\(a\)[/tex].
For example:
[tex]\[ \log_3 (3^2) = 2 \quad \text{and} \quad \log_2 (4^3) = 6 \][/tex]
Putting it all together, a possible set of digits from 1 to 9 that meet these criteria are:
### Possible Solutions
1. Integer Logarithm:
[tex]\[ \log_2 8 \quad \text{which simplifies to} \quad 3 \quad (\text{an integer}) \][/tex]
2. Irrational Logarithm:
[tex]\[ \log_3 \frac{2}{1} \quad \text{which simplifies to} \quad \log_3 2 \quad (\text{irrational}) \][/tex]
3. Rational Logarithm:
[tex]\[ \log_3 3^2 \quad \text{which simplifies to} \quad 2 \quad (\text{rational}) \][/tex]
So, the filled-in logs with these conditions might look like:
[tex]\[ \log_2 8 \quad \text{produces an integer,} \][/tex]
[tex]\[ \log_3 \frac{2}{1} \quad \text{produces an irrational number,} \][/tex]
[tex]\[ \log_3 3^2 \quad \text{produces a rational number.} \][/tex]
These satisfy all the given conditions using the digits 1 to 9 exactly once.
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. IDNLearn.com has the answers you need. Thank you for visiting, and we look forward to helping you again soon.