Dive into the world of knowledge and get your queries resolved at IDNLearn.com. Get the information you need from our experts, who provide reliable and detailed answers to all your questions.

Directions: Using the digits 1 to 9, fill in the boxes to produce a logarithm that meets the indicated requirements. Each digit can only be used once.

1. [tex]\log _{\square} \square[/tex]
- Produces an integer

2. [tex]\log _{\square} \frac{\square}{\square}[/tex]
- Produces an irrational number

3. [tex]\log _{\square} \square^{\square}[/tex]
- Produces a rational number


Sagot :

Alright, let's solve this problem step-by-step:

### Condition 1: Produces an integer

We need to fill in the boxes to make the expression:
[tex]\[ \log_{\square} \square \quad \text{produce an integer} \][/tex]
The logarithm of a number [tex]\( b \)[/tex] with base [tex]\( a \)[/tex] [tex]\(( \log_a b )\)[/tex] produces an integer if [tex]\( b \)[/tex] is an integer power of [tex]\( a \)[/tex]. So, we need to find [tex]\( a \)[/tex] and [tex]\( b \)[/tex] such that:
[tex]\[ \log_a b = n \quad \text{where} \quad n \in \mathbb{Z} \][/tex]
For example:
[tex]\[ \log_2 8 = \log_2 2^3 = 3 \][/tex]
So, one possible solution is:
[tex]\[ a=2 \quad \text{and} \quad b=8 \][/tex]

### Condition 2: Produces an irrational number

We need to fill in the boxes to make the expression:
[tex]\[ \log_{\square} \frac{\square}{\square} \quad \text{produce an irrational number} \][/tex]
A logarithm is irrational when the base [tex]\( a \)[/tex] and the argument [tex]\( b \)[/tex] are such that [tex]\( b \)[/tex] is not an integer power of [tex]\( a \)[/tex], and they do not have a simple fractional or exponential relationship.

For instance:
[tex]\[ \log_3 2 \][/tex]
This is irrational because 2 is not an integer power of 3 nor does it have a straightforward fractional or exponential relationship with 3.

### Condition 3: Produces a rational number

We need to fill in the boxes to make the expression:
[tex]\[ \log_{\square} \square^{\square} \quad \text{produce a rational number} \][/tex]
A logarithm of the form [tex]\(\log_a (b^c)\)[/tex] produces a rational number if [tex]\(b^c\)[/tex] is a power of [tex]\(a\)[/tex].

For example:
[tex]\[ \log_3 (3^2) = 2 \quad \text{and} \quad \log_2 (4^3) = 6 \][/tex]

Putting it all together, a possible set of digits from 1 to 9 that meet these criteria are:

### Possible Solutions

1. Integer Logarithm:
[tex]\[ \log_2 8 \quad \text{which simplifies to} \quad 3 \quad (\text{an integer}) \][/tex]

2. Irrational Logarithm:
[tex]\[ \log_3 \frac{2}{1} \quad \text{which simplifies to} \quad \log_3 2 \quad (\text{irrational}) \][/tex]

3. Rational Logarithm:
[tex]\[ \log_3 3^2 \quad \text{which simplifies to} \quad 2 \quad (\text{rational}) \][/tex]

So, the filled-in logs with these conditions might look like:

[tex]\[ \log_2 8 \quad \text{produces an integer,} \][/tex]
[tex]\[ \log_3 \frac{2}{1} \quad \text{produces an irrational number,} \][/tex]
[tex]\[ \log_3 3^2 \quad \text{produces a rational number.} \][/tex]

These satisfy all the given conditions using the digits 1 to 9 exactly once.
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Your search for answers ends at IDNLearn.com. Thanks for visiting, and we look forward to helping you again soon.