Get comprehensive solutions to your questions with the help of IDNLearn.com's experts. Ask anything and receive thorough, reliable answers from our community of experienced professionals.
Sagot :
Let's calculate the standard enthalpy change for each reaction step-by-step. We will use known standard enthalpies of formation (ΔH_f°) for each substance involved.
### Reaction (a):
[tex]\[ H_2(g) + \frac{1}{2} O_2(g) \longrightarrow H_2O(l) \][/tex]
To find the enthalpy change (ΔH) for this reaction, we use the standard enthalpies of formation for the reactants and products. The standard enthalpy of formation (ΔH_f°) is defined as the enthalpy change when one mole of a compound is formed from its elements in their standard states.
Given:
- ΔH_f° (H_2O(l)) = -285.8 kJ/mol
- ΔH_f° (H_2(g)) = 0 kJ/mol (standard enthalpy of formation for any element in its standard state is zero)
- ΔH_f° (O_2(g)) = 0 kJ/mol (same reasoning as above)
The enthalpy change for the reaction can be calculated using:
[tex]\[ \Delta H = \sum \Delta H_f^\circ(\text{products}) - \sum \Delta H_f^\circ(\text{reactants}) \][/tex]
For reaction (a):
[tex]\[ \Delta H^\circ = [\Delta H_f^\circ(\text{H}_2\text{O(l)})] - [\Delta H_f^\circ(\text{H}_2(g)) + \frac{1}{2} \Delta H_f^\circ(\text{O}_2(g))] \][/tex]
[tex]\[ \Delta H^\circ = [-285.8 \, \text{kJ/mol}] - [0 + 0] \][/tex]
[tex]\[ \Delta H^\circ = -285.8 \, \text{kJ/mol} \][/tex]
### Reaction (b):
[tex]\[ C_2H_4(g) + 3O_2(g) \longrightarrow C_2H_5OH(l) \][/tex]
For this reaction, we need the standard enthalpies of formation for ethylene (C_2H_4), ethanol (C_2H_5OH), and the standard states of carbon dioxide (CO_2) and water (H_2O).
Given:
- ΔH_f° (C_2H_5OH(l)) = -277.0 kJ/mol
- ΔH_f° (C_2H_4(g)) = 52.26 kJ/mol
- ΔH_f° (O_2(g)) = 0 kJ/mol (standard state)
- ΔH_f° (CO_2(g)) = -393.5 kJ/mol
- ΔH_f° (H_2O(l)) = -285.8 kJ/mol
Again, using the enthalpy change formula:
[tex]\[ \Delta H = \sum \Delta H_f^\circ(\text{products}) - \sum \Delta H_f^\circ(\text{reactants}) \][/tex]
For reaction (b):
[tex]\[ \Delta H^\circ = [\Delta H_f^\circ(\text{C}_2\text{H}_5\text{OH(l)})] - [\Delta H_f^\circ(\text{C}_2\text{H}_4(g)) + 3 \Delta H_f^\circ(\text{O}_2(g))] \][/tex]
[tex]\[ \Delta H^\circ = [-277.0 \, \text{kJ/mol}] - [52.26 \, \text{kJ/mol} + 3 \times 0 \, \text{kJ/mol}] \][/tex]
[tex]\[ \Delta H^\circ = -277.0 \, \text{kJ/mol} - 52.26 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H^\circ = -329.26 \, \text{kJ/mol} \][/tex]
### Summary of Results:
1. The standard enthalpy change for reaction (a):
[tex]\[ \Delta H = -285.8 \, \text{kJ/mol} \][/tex]
2. The standard enthalpy change for reaction (b):
[tex]\[ \Delta H = -329.26 \, \text{kJ/mol} \][/tex]
### Reaction (a):
[tex]\[ H_2(g) + \frac{1}{2} O_2(g) \longrightarrow H_2O(l) \][/tex]
To find the enthalpy change (ΔH) for this reaction, we use the standard enthalpies of formation for the reactants and products. The standard enthalpy of formation (ΔH_f°) is defined as the enthalpy change when one mole of a compound is formed from its elements in their standard states.
Given:
- ΔH_f° (H_2O(l)) = -285.8 kJ/mol
- ΔH_f° (H_2(g)) = 0 kJ/mol (standard enthalpy of formation for any element in its standard state is zero)
- ΔH_f° (O_2(g)) = 0 kJ/mol (same reasoning as above)
The enthalpy change for the reaction can be calculated using:
[tex]\[ \Delta H = \sum \Delta H_f^\circ(\text{products}) - \sum \Delta H_f^\circ(\text{reactants}) \][/tex]
For reaction (a):
[tex]\[ \Delta H^\circ = [\Delta H_f^\circ(\text{H}_2\text{O(l)})] - [\Delta H_f^\circ(\text{H}_2(g)) + \frac{1}{2} \Delta H_f^\circ(\text{O}_2(g))] \][/tex]
[tex]\[ \Delta H^\circ = [-285.8 \, \text{kJ/mol}] - [0 + 0] \][/tex]
[tex]\[ \Delta H^\circ = -285.8 \, \text{kJ/mol} \][/tex]
### Reaction (b):
[tex]\[ C_2H_4(g) + 3O_2(g) \longrightarrow C_2H_5OH(l) \][/tex]
For this reaction, we need the standard enthalpies of formation for ethylene (C_2H_4), ethanol (C_2H_5OH), and the standard states of carbon dioxide (CO_2) and water (H_2O).
Given:
- ΔH_f° (C_2H_5OH(l)) = -277.0 kJ/mol
- ΔH_f° (C_2H_4(g)) = 52.26 kJ/mol
- ΔH_f° (O_2(g)) = 0 kJ/mol (standard state)
- ΔH_f° (CO_2(g)) = -393.5 kJ/mol
- ΔH_f° (H_2O(l)) = -285.8 kJ/mol
Again, using the enthalpy change formula:
[tex]\[ \Delta H = \sum \Delta H_f^\circ(\text{products}) - \sum \Delta H_f^\circ(\text{reactants}) \][/tex]
For reaction (b):
[tex]\[ \Delta H^\circ = [\Delta H_f^\circ(\text{C}_2\text{H}_5\text{OH(l)})] - [\Delta H_f^\circ(\text{C}_2\text{H}_4(g)) + 3 \Delta H_f^\circ(\text{O}_2(g))] \][/tex]
[tex]\[ \Delta H^\circ = [-277.0 \, \text{kJ/mol}] - [52.26 \, \text{kJ/mol} + 3 \times 0 \, \text{kJ/mol}] \][/tex]
[tex]\[ \Delta H^\circ = -277.0 \, \text{kJ/mol} - 52.26 \, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H^\circ = -329.26 \, \text{kJ/mol} \][/tex]
### Summary of Results:
1. The standard enthalpy change for reaction (a):
[tex]\[ \Delta H = -285.8 \, \text{kJ/mol} \][/tex]
2. The standard enthalpy change for reaction (b):
[tex]\[ \Delta H = -329.26 \, \text{kJ/mol} \][/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Thanks for visiting IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more helpful information.