IDNLearn.com: Your one-stop destination for finding reliable answers. Get step-by-step guidance for all your technical questions from our dedicated community members.
Sagot :
To determine which electron transition results in the highest-energy photon according to the Bohr model, we need to calculate the energy differences for the given transitions. The Bohr model states that the energy of an electron in a hydrogen atom is given by:
[tex]\[ E_n = -\frac{R_h c h}{n^2} \][/tex]
Where:
- [tex]\( E_n \)[/tex] is the energy at level [tex]\( n \)[/tex],
- [tex]\( R_h \)[/tex] is the Rydberg constant ([tex]\( 1.097 \times 10^7 \)[/tex] m[tex]\(^{-1}\)[/tex]),
- [tex]\( c \)[/tex] is the speed of light ([tex]\( 3 \times 10^8 \)[/tex] m/s),
- [tex]\( h \)[/tex] is Planck's constant ([tex]\( 6.626 \times 10^{-34} \)[/tex] J·s),
- [tex]\( n \)[/tex] is the principal quantum number.
The energy difference ([tex]\( \Delta E \)[/tex]) between two levels [tex]\( n_i \)[/tex] and [tex]\( n_f \)[/tex] (where [tex]\( n_i \)[/tex] is the initial level and [tex]\( n_f \)[/tex] is the final level) is given by:
[tex]\[ \Delta E = E_{n_f} - E_{n_i} = R_h c h \left( \frac{1}{n_f^2} - \frac{1}{n_i^2} \right) \][/tex]
We need to calculate this energy difference for each given transition:
1. Transition from [tex]\( n=4 \)[/tex] to [tex]\( n=1 \)[/tex]:
[tex]\[ \Delta E_{4\to1} = R_h c h \left( \frac{1}{1^2} - \frac{1}{4^2} \right) \][/tex]
[tex]\[ \Delta E_{4\to1} = R_h c h \left( 1 - \frac{1}{16} \right) \][/tex]
[tex]\[ \Delta E_{4\to1} = R_h c h \left( \frac{15}{16} \right) \][/tex]
2. Transition from [tex]\( n=4 \)[/tex] to [tex]\( n=3 \)[/tex]:
[tex]\[ \Delta E_{4\to3} = R_h c h \left( \frac{1}{3^2} - \frac{1}{4^2} \right) \][/tex]
[tex]\[ \Delta E_{4\to3} = R_h c h \left( \frac{1}{9} - \frac{1}{16} \right) \][/tex]
[tex]\[ \Delta E_{4\to3} = R_h c h \left( \frac{16 - 9}{144} \right) \][/tex]
[tex]\[ \Delta E_{4\to3} = R_h c h \left( \frac{7}{144} \right) \][/tex]
3. Transition from [tex]\( n=3 \)[/tex] to [tex]\( n=4 \)[/tex]:
[tex]\[ \Delta E_{3\to4} = R_h c h \left( \frac{1}{4^2} - \frac{1}{3^2} \right) \][/tex]
[tex]\[ \Delta E_{3\to4} = R_h c h \left( \frac{1}{16} - \frac{1}{9} \right) \][/tex]
[tex]\[ \Delta E_{3\to4} = R_h c h \left( \frac{9 - 16}{144} \right) \][/tex]
[tex]\[ \Delta E_{3\to4} = R_h c h \left( \frac{-7}{144} \right) \][/tex]
Since this is a transition to a higher energy level, the energy difference is negative, indicating absorption rather than emission.
4. Transition from [tex]\( n=1 \)[/tex] to [tex]\( n=4 \)[/tex]:
[tex]\[ \Delta E_{1\to4} = R_h c h \left( \frac{1}{4^2} - \frac{1}{1^2} \right) \][/tex]
[tex]\[ \Delta E_{1\to4} = R_h c h \left( \frac{1}{16} - 1 \right) \][/tex]
[tex]\[ \Delta E_{1\to4} = R_h c h \left( \frac{1 - 16}{16} \right) \][/tex]
[tex]\[ \Delta E_{1\to4} = R_h c h \left( \frac{-15}{16} \right) \][/tex]
Again, this negative energy difference indicates absorption rather than emission.
After calculating these energy differences, we compare the magnitudes to find the highest-energy photon emission.
The energy differences for emission are:
- [tex]\( \Delta E_{4\to1} \)[/tex] (highest magnitude)
- [tex]\( \Delta E_{4\to3} \)[/tex]
The transition that results in the highest-energy photon is:
[tex]\[ n = 4 \text{ to } n = 1 \][/tex]
Thus, the transition [tex]\( n=4 \)[/tex] to [tex]\( n=1 \)[/tex] results in the highest-energy photon, with an energy of approximately [tex]\( 2.044 \times 10^{-18} \)[/tex] joules.
[tex]\[ E_n = -\frac{R_h c h}{n^2} \][/tex]
Where:
- [tex]\( E_n \)[/tex] is the energy at level [tex]\( n \)[/tex],
- [tex]\( R_h \)[/tex] is the Rydberg constant ([tex]\( 1.097 \times 10^7 \)[/tex] m[tex]\(^{-1}\)[/tex]),
- [tex]\( c \)[/tex] is the speed of light ([tex]\( 3 \times 10^8 \)[/tex] m/s),
- [tex]\( h \)[/tex] is Planck's constant ([tex]\( 6.626 \times 10^{-34} \)[/tex] J·s),
- [tex]\( n \)[/tex] is the principal quantum number.
The energy difference ([tex]\( \Delta E \)[/tex]) between two levels [tex]\( n_i \)[/tex] and [tex]\( n_f \)[/tex] (where [tex]\( n_i \)[/tex] is the initial level and [tex]\( n_f \)[/tex] is the final level) is given by:
[tex]\[ \Delta E = E_{n_f} - E_{n_i} = R_h c h \left( \frac{1}{n_f^2} - \frac{1}{n_i^2} \right) \][/tex]
We need to calculate this energy difference for each given transition:
1. Transition from [tex]\( n=4 \)[/tex] to [tex]\( n=1 \)[/tex]:
[tex]\[ \Delta E_{4\to1} = R_h c h \left( \frac{1}{1^2} - \frac{1}{4^2} \right) \][/tex]
[tex]\[ \Delta E_{4\to1} = R_h c h \left( 1 - \frac{1}{16} \right) \][/tex]
[tex]\[ \Delta E_{4\to1} = R_h c h \left( \frac{15}{16} \right) \][/tex]
2. Transition from [tex]\( n=4 \)[/tex] to [tex]\( n=3 \)[/tex]:
[tex]\[ \Delta E_{4\to3} = R_h c h \left( \frac{1}{3^2} - \frac{1}{4^2} \right) \][/tex]
[tex]\[ \Delta E_{4\to3} = R_h c h \left( \frac{1}{9} - \frac{1}{16} \right) \][/tex]
[tex]\[ \Delta E_{4\to3} = R_h c h \left( \frac{16 - 9}{144} \right) \][/tex]
[tex]\[ \Delta E_{4\to3} = R_h c h \left( \frac{7}{144} \right) \][/tex]
3. Transition from [tex]\( n=3 \)[/tex] to [tex]\( n=4 \)[/tex]:
[tex]\[ \Delta E_{3\to4} = R_h c h \left( \frac{1}{4^2} - \frac{1}{3^2} \right) \][/tex]
[tex]\[ \Delta E_{3\to4} = R_h c h \left( \frac{1}{16} - \frac{1}{9} \right) \][/tex]
[tex]\[ \Delta E_{3\to4} = R_h c h \left( \frac{9 - 16}{144} \right) \][/tex]
[tex]\[ \Delta E_{3\to4} = R_h c h \left( \frac{-7}{144} \right) \][/tex]
Since this is a transition to a higher energy level, the energy difference is negative, indicating absorption rather than emission.
4. Transition from [tex]\( n=1 \)[/tex] to [tex]\( n=4 \)[/tex]:
[tex]\[ \Delta E_{1\to4} = R_h c h \left( \frac{1}{4^2} - \frac{1}{1^2} \right) \][/tex]
[tex]\[ \Delta E_{1\to4} = R_h c h \left( \frac{1}{16} - 1 \right) \][/tex]
[tex]\[ \Delta E_{1\to4} = R_h c h \left( \frac{1 - 16}{16} \right) \][/tex]
[tex]\[ \Delta E_{1\to4} = R_h c h \left( \frac{-15}{16} \right) \][/tex]
Again, this negative energy difference indicates absorption rather than emission.
After calculating these energy differences, we compare the magnitudes to find the highest-energy photon emission.
The energy differences for emission are:
- [tex]\( \Delta E_{4\to1} \)[/tex] (highest magnitude)
- [tex]\( \Delta E_{4\to3} \)[/tex]
The transition that results in the highest-energy photon is:
[tex]\[ n = 4 \text{ to } n = 1 \][/tex]
Thus, the transition [tex]\( n=4 \)[/tex] to [tex]\( n=1 \)[/tex] results in the highest-energy photon, with an energy of approximately [tex]\( 2.044 \times 10^{-18} \)[/tex] joules.
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for visiting IDNLearn.com. We’re here to provide dependable answers, so visit us again soon.