IDNLearn.com makes it easy to get reliable answers from experts and enthusiasts alike. Our experts are available to provide accurate, comprehensive answers to help you make informed decisions about any topic or issue you encounter.

Given the reaction:

[tex]\[ 2 H_2(g) + O_2(g) \rightarrow 2 H_2O(\ell) \][/tex]

What is the total number of liters of [tex]\[ O_2(g) \][/tex] at STP needed to produce [tex]\[ 6.0 \times 10^{23} \][/tex] molecules of [tex]\[ H_2O(\ell) \][/tex]?

A. 11.2 L
B. 22.4 L
C. 33.6 L
D. 44.8 L


Sagot :

To determine the total number of liters of [tex]\(O_2(g)\)[/tex] at STP (Standard Temperature and Pressure) needed to produce [tex]\(6.0 \times 10^{23}\)[/tex] molecules of [tex]\(H_2O(\ell)\)[/tex], we can follow a step-by-step solution:

1. Determine the number of moles of [tex]\(H_2O\)[/tex] required:
- Avogadro's number states that 1 mole of any substance contains [tex]\(6.022 \times 10^{23}\)[/tex] molecules.
- We need [tex]\(6.0 \times 10^{23}\)[/tex] molecules of [tex]\(H_2O\)[/tex].
- To find the number of moles of [tex]\(H_2O\)[/tex], we use the formula:
[tex]\[ \text{Moles of } H_2O = \frac{6.0 \times 10^{23} \text{ molecules}}{6.022 \times 10^{23} \text{ molecules/mole}} \][/tex]

This gives us:
[tex]\[ \text{Moles of } H_2O \approx 0.996 \text{ moles} \][/tex]

2. Determine the number of moles of [tex]\(O_2\)[/tex] required using stoichiometry:
- The balanced chemical equation is [tex]\(2 H_2(g) + O_2(g) \rightarrow 2 H_2O(l)\)[/tex].
- According to the equation, 1 mole of [tex]\(O_2\)[/tex] produces 2 moles of [tex]\(H_2O\)[/tex].
- Therefore, to produce 0.996 moles of [tex]\(H_2O\)[/tex], we need:
[tex]\[ \text{Moles of } O_2 = \frac{0.996 \text{ moles of } H_2O}{2} \][/tex]
This gives us:
[tex]\[ \text{Moles of } O_2 \approx 0.498 \text{ moles} \][/tex]

3. Calculate the volume of [tex]\(O_2(g)\)[/tex] needed at STP:
- At STP, 1 mole of any gas occupies 22.4 liters.
- To find the volume of [tex]\(O_2\)[/tex] required, we multiply the number of moles of [tex]\(O_2\)[/tex] by the molar volume:
[tex]\[ \text{Volume of } O_2 \approx 0.498 \text{ moles} \times 22.4 \text{ L/mole} \][/tex]
This gives us:
[tex]\[ \text{Volume of } O_2 \approx 11.16 \text{ L} \][/tex]

Therefore, the total number of liters of [tex]\(O_2(g)\)[/tex] at STP needed to produce [tex]\(6.0 \times 10^{23}\)[/tex] molecules of [tex]\(H_2O(\ell)\)[/tex] is closest to:
[tex]\[ \boxed{11.2 \text{ L}} \][/tex]

Hence, the correct answer is:
[tex]\[ A. 11.2 \text{ L} \][/tex]