Get detailed and accurate responses to your questions on IDNLearn.com. Our platform is designed to provide accurate and comprehensive answers to any questions you may have.

Page 13 of 17

19. If [tex]$a$[/tex] varies jointly as [tex]$b$[/tex] and the square root of [tex]$c$[/tex] and [tex]$a=21$[/tex] when [tex]$b=5$[/tex] and [tex]$c=36$[/tex], find the value of

(a) [tex]$k$[/tex], the constant of variation.

(b) [tex]$a$[/tex] when [tex]$b=9$[/tex] and [tex]$c=100$[/tex].

(c) [tex]$c$[/tex] when [tex]$a=70$[/tex] and [tex]$b=25$[/tex].


Sagot :

Certainly! Let's solve the question step by step.

### Given:

- [tex]\( a = 21 \)[/tex] when [tex]\( b = 5 \)[/tex] and [tex]\( c = 36 \)[/tex]
- [tex]\( a \)[/tex] varies jointly as [tex]\( b \)[/tex] and the square root of [tex]\( c \)[/tex], i.e., [tex]\( a = k \cdot b \cdot \sqrt{c} \)[/tex]

### Step-by-step solution:

#### (a) Finding [tex]\( k \)[/tex], the constant of variation:

We start with the relationship [tex]\( a = k \cdot b \cdot \sqrt{c} \)[/tex].

Given values:
- [tex]\( a = 21 \)[/tex]
- [tex]\( b = 5 \)[/tex]
- [tex]\( c = 36 \)[/tex]

We substitute these into the equation to solve for [tex]\( k \)[/tex]:

[tex]\[ 21 = k \cdot 5 \cdot \sqrt{36} \][/tex]

Since [tex]\( \sqrt{36} = 6 \)[/tex]:

[tex]\[ 21 = k \cdot 5 \cdot 6 \][/tex]
[tex]\[ 21 = k \cdot 30 \][/tex]

Solving for [tex]\( k \)[/tex]:

[tex]\[ k = \frac{21}{30} \][/tex]
[tex]\[ k = 0.7 \][/tex]

So, the constant of variation [tex]\( k \)[/tex] is [tex]\( \boxed{0.7} \)[/tex].

#### (b) Finding [tex]\( a \)[/tex] when [tex]\( b = 9 \)[/tex] and [tex]\( c = 100 \)[/tex]:

Using the previously found value of [tex]\( k \)[/tex] and the general formula [tex]\( a = k \cdot b \cdot \sqrt{c} \)[/tex]:

Given values:
- [tex]\( b = 9 \)[/tex]
- [tex]\( c = 100 \)[/tex]

Substitute these into the equation:

[tex]\[ a = 0.7 \cdot 9 \cdot \sqrt{100} \][/tex]

Since [tex]\( \sqrt{100} = 10 \)[/tex]:

[tex]\[ a = 0.7 \cdot 9 \cdot 10 \][/tex]
[tex]\[ a = 0.7 \cdot 90 \][/tex]
[tex]\[ a = 63 \][/tex]

So, [tex]\( a \)[/tex] when [tex]\( b = 9 \)[/tex] and [tex]\( c = 100 \)[/tex] is [tex]\( \boxed{63} \)[/tex].

#### (c) Finding [tex]\( c \)[/tex] when [tex]\( a = 70 \)[/tex] and [tex]\( b = 25 \)[/tex]:

Using the constant [tex]\( k \)[/tex] again, and the general formula [tex]\( a = k \cdot b \cdot \sqrt{c} \)[/tex]:

Given values:
- [tex]\( a = 70 \)[/tex]
- [tex]\( b = 25 \)[/tex]

We need to solve for [tex]\( c \)[/tex]. Substitute the given values into the equation:

[tex]\[ 70 = 0.7 \cdot 25 \cdot \sqrt{c} \][/tex]

Solving for [tex]\( \sqrt{c} \)[/tex]:

[tex]\[ 70 = 17.5 \cdot \sqrt{c} \][/tex]
[tex]\[ \sqrt{c} = \frac{70}{17.5} \][/tex]
[tex]\[ \sqrt{c} = 4 \][/tex]

Squaring both sides:

[tex]\[ c = 4^2 \][/tex]
[tex]\[ c = 16 \][/tex]

So, [tex]\( c \)[/tex] when [tex]\( a = 70 \)[/tex] and [tex]\( b = 25 \)[/tex] is [tex]\( \boxed{16} \)[/tex].

Hence, our answers are:
- [tex]\( k = \boxed{0.7} \)[/tex]
- [tex]\( a = \boxed{63} \)[/tex] when [tex]\( b = 9 \)[/tex] and [tex]\( c = 100 \)[/tex]
- [tex]\( c = \boxed{16} \)[/tex] when [tex]\( a = 70 \)[/tex] and [tex]\( b = 25 \)[/tex]