Connect with a knowledgeable community and get your questions answered on IDNLearn.com. Our experts are ready to provide in-depth answers and practical solutions to any questions you may have.
Sagot :
To find the value of the equilibrium constant [tex]\( K_c \)[/tex] for the reaction
[tex]\[ B_2(g) \rightleftharpoons 2B(g), \][/tex]
we need to use the given rate constants [tex]\( k_{\text{fwd}} \)[/tex] and [tex]\( k_{\text{rev}} \)[/tex].
1. The forward rate constant [tex]\( k_{\text{fwd}} \)[/tex] is given as [tex]\( 7.00 \times 10^{-5} \, \text{s}^{-1} \)[/tex].
2. The reverse rate constant [tex]\( k_{\text{rev}} \)[/tex] is given as [tex]\( 2.00 \times 10^{-5} \, \text{L mol}^{-1} \text{s}^{-1} \)[/tex].
The equilibrium constant [tex]\( K_c \)[/tex] is defined as the ratio of the forward rate constant to the reverse rate constant:
[tex]\[ K_c = \frac{k_{\text{fwd}}}{k_{\text{rev}}}. \][/tex]
Substituting the given values, we have:
[tex]\[ K_c = \frac{7.00 \times 10^{-5} \, \text{s}^{-1}}{2.00 \times 10^{-5} \, \text{L mol}^{-1} \text{s}^{-1}}. \][/tex]
Performing the division:
[tex]\[ K_c = \frac{7.00}{2.00} \times \frac{10^{-5}}{10^{-5}}. \][/tex]
Since [tex]\( 10^{-5} \)[/tex] in the numerator and denominator cancel each other out, we are left with:
[tex]\[ K_c = \frac{7.00}{2.00} = 3.50. \][/tex]
Thus, the value of the equilibrium constant [tex]\( K_c \)[/tex] under these conditions is [tex]\( 3.50 \)[/tex].
[tex]\[ B_2(g) \rightleftharpoons 2B(g), \][/tex]
we need to use the given rate constants [tex]\( k_{\text{fwd}} \)[/tex] and [tex]\( k_{\text{rev}} \)[/tex].
1. The forward rate constant [tex]\( k_{\text{fwd}} \)[/tex] is given as [tex]\( 7.00 \times 10^{-5} \, \text{s}^{-1} \)[/tex].
2. The reverse rate constant [tex]\( k_{\text{rev}} \)[/tex] is given as [tex]\( 2.00 \times 10^{-5} \, \text{L mol}^{-1} \text{s}^{-1} \)[/tex].
The equilibrium constant [tex]\( K_c \)[/tex] is defined as the ratio of the forward rate constant to the reverse rate constant:
[tex]\[ K_c = \frac{k_{\text{fwd}}}{k_{\text{rev}}}. \][/tex]
Substituting the given values, we have:
[tex]\[ K_c = \frac{7.00 \times 10^{-5} \, \text{s}^{-1}}{2.00 \times 10^{-5} \, \text{L mol}^{-1} \text{s}^{-1}}. \][/tex]
Performing the division:
[tex]\[ K_c = \frac{7.00}{2.00} \times \frac{10^{-5}}{10^{-5}}. \][/tex]
Since [tex]\( 10^{-5} \)[/tex] in the numerator and denominator cancel each other out, we are left with:
[tex]\[ K_c = \frac{7.00}{2.00} = 3.50. \][/tex]
Thus, the value of the equilibrium constant [tex]\( K_c \)[/tex] under these conditions is [tex]\( 3.50 \)[/tex].
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Find clear answers at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.