At IDNLearn.com, find answers to your most pressing questions from experts and enthusiasts alike. Discover reliable answers to your questions with our extensive database of expert knowledge.
Sagot :
To find the value of the equilibrium constant [tex]\( K_c \)[/tex] for the reaction
[tex]\[ B_2(g) \rightleftharpoons 2B(g), \][/tex]
we need to use the given rate constants [tex]\( k_{\text{fwd}} \)[/tex] and [tex]\( k_{\text{rev}} \)[/tex].
1. The forward rate constant [tex]\( k_{\text{fwd}} \)[/tex] is given as [tex]\( 7.00 \times 10^{-5} \, \text{s}^{-1} \)[/tex].
2. The reverse rate constant [tex]\( k_{\text{rev}} \)[/tex] is given as [tex]\( 2.00 \times 10^{-5} \, \text{L mol}^{-1} \text{s}^{-1} \)[/tex].
The equilibrium constant [tex]\( K_c \)[/tex] is defined as the ratio of the forward rate constant to the reverse rate constant:
[tex]\[ K_c = \frac{k_{\text{fwd}}}{k_{\text{rev}}}. \][/tex]
Substituting the given values, we have:
[tex]\[ K_c = \frac{7.00 \times 10^{-5} \, \text{s}^{-1}}{2.00 \times 10^{-5} \, \text{L mol}^{-1} \text{s}^{-1}}. \][/tex]
Performing the division:
[tex]\[ K_c = \frac{7.00}{2.00} \times \frac{10^{-5}}{10^{-5}}. \][/tex]
Since [tex]\( 10^{-5} \)[/tex] in the numerator and denominator cancel each other out, we are left with:
[tex]\[ K_c = \frac{7.00}{2.00} = 3.50. \][/tex]
Thus, the value of the equilibrium constant [tex]\( K_c \)[/tex] under these conditions is [tex]\( 3.50 \)[/tex].
[tex]\[ B_2(g) \rightleftharpoons 2B(g), \][/tex]
we need to use the given rate constants [tex]\( k_{\text{fwd}} \)[/tex] and [tex]\( k_{\text{rev}} \)[/tex].
1. The forward rate constant [tex]\( k_{\text{fwd}} \)[/tex] is given as [tex]\( 7.00 \times 10^{-5} \, \text{s}^{-1} \)[/tex].
2. The reverse rate constant [tex]\( k_{\text{rev}} \)[/tex] is given as [tex]\( 2.00 \times 10^{-5} \, \text{L mol}^{-1} \text{s}^{-1} \)[/tex].
The equilibrium constant [tex]\( K_c \)[/tex] is defined as the ratio of the forward rate constant to the reverse rate constant:
[tex]\[ K_c = \frac{k_{\text{fwd}}}{k_{\text{rev}}}. \][/tex]
Substituting the given values, we have:
[tex]\[ K_c = \frac{7.00 \times 10^{-5} \, \text{s}^{-1}}{2.00 \times 10^{-5} \, \text{L mol}^{-1} \text{s}^{-1}}. \][/tex]
Performing the division:
[tex]\[ K_c = \frac{7.00}{2.00} \times \frac{10^{-5}}{10^{-5}}. \][/tex]
Since [tex]\( 10^{-5} \)[/tex] in the numerator and denominator cancel each other out, we are left with:
[tex]\[ K_c = \frac{7.00}{2.00} = 3.50. \][/tex]
Thus, the value of the equilibrium constant [tex]\( K_c \)[/tex] under these conditions is [tex]\( 3.50 \)[/tex].
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Find clear answers at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.