Join IDNLearn.com to access a wealth of knowledge and get your questions answered by experts. Discover detailed answers to your questions with our extensive database of expert knowledge.
Sagot :
Sure, I'll guide you through the steps necessary to solve for the charge [tex]\( q \)[/tex] given the conditions of the problem.
### Given:
1. Energy used to move the charge: [tex]\( 10 \text{ mJ} \)[/tex]
2. Initial position [tex]\( x_1 = 25 \text{ cm} \)[/tex]
3. Final position [tex]\( x_2 = -25 \text{ cm} \)[/tex]
4. Electric field [tex]\( E = -20 \text{ N/C} \)[/tex]
### Step-by-Step Solution:
#### Step 1: Convert All Given Values to SI Units
1. Energy:
The energy given is [tex]\( 10 \text{ mJ} \)[/tex]. Convert it to joules:
[tex]\[ 10 \text{ mJ} = 10 \times 10^{-3} \text{ J} = 0.01 \text{ J} \][/tex]
2. Positions:
Convert the positions from centimeters to meters:
[tex]\[ x_1 = 25 \text{ cm} = 25 \times 10^{-2} \text{ m} = 0.25 \text{ m} \][/tex]
[tex]\[ x_2 = -25 \text{ cm} = -25 \times 10^{-2} \text{ m} = -0.25 \text{ m} \][/tex]
3. Electric Field:
The electric field is already in SI units ([tex]\(\text{N/C}\)[/tex]), so no conversion is necessary:
[tex]\[ E = -20 \text{ N/C} \][/tex]
#### Step 2: Calculate the Potential Difference
The potential difference ([tex]\(\Delta V\)[/tex]) is given by:
[tex]\[ \Delta V = E \cdot \Delta x \][/tex]
where [tex]\(\Delta x = x_2 - x_1\)[/tex]. Substitute the values:
[tex]\[ \Delta x = -0.25 \text{ m} - 0.25 \text{ m} = -0.5 \text{ m} \][/tex]
Thus,
[tex]\[ \Delta V = (-20 \text{ N/C}) \times (-0.5 \text{ m}) = 10 \text{ V} \][/tex]
#### Step 3: Calculate the Charge [tex]\( q \)[/tex]
Using the energy equation involving electric potential:
[tex]\[ \text{Energy} = q \cdot \Delta V \][/tex]
Rearrange to solve for [tex]\( q \)[/tex]:
[tex]\[ q = \frac{\text{Energy}}{\Delta V} \][/tex]
Substitute the values:
[tex]\[ q = \frac{0.01 \text{ J}}{10 \text{ V}} = 0.001 \text{ C} \][/tex]
### Final Answer:
- The potential difference (Voltage) is [tex]\( 10 \text{ V} \)[/tex].
- The charge [tex]\( q \)[/tex] is [tex]\( 0.001 \text{ C} \)[/tex].
### Given:
1. Energy used to move the charge: [tex]\( 10 \text{ mJ} \)[/tex]
2. Initial position [tex]\( x_1 = 25 \text{ cm} \)[/tex]
3. Final position [tex]\( x_2 = -25 \text{ cm} \)[/tex]
4. Electric field [tex]\( E = -20 \text{ N/C} \)[/tex]
### Step-by-Step Solution:
#### Step 1: Convert All Given Values to SI Units
1. Energy:
The energy given is [tex]\( 10 \text{ mJ} \)[/tex]. Convert it to joules:
[tex]\[ 10 \text{ mJ} = 10 \times 10^{-3} \text{ J} = 0.01 \text{ J} \][/tex]
2. Positions:
Convert the positions from centimeters to meters:
[tex]\[ x_1 = 25 \text{ cm} = 25 \times 10^{-2} \text{ m} = 0.25 \text{ m} \][/tex]
[tex]\[ x_2 = -25 \text{ cm} = -25 \times 10^{-2} \text{ m} = -0.25 \text{ m} \][/tex]
3. Electric Field:
The electric field is already in SI units ([tex]\(\text{N/C}\)[/tex]), so no conversion is necessary:
[tex]\[ E = -20 \text{ N/C} \][/tex]
#### Step 2: Calculate the Potential Difference
The potential difference ([tex]\(\Delta V\)[/tex]) is given by:
[tex]\[ \Delta V = E \cdot \Delta x \][/tex]
where [tex]\(\Delta x = x_2 - x_1\)[/tex]. Substitute the values:
[tex]\[ \Delta x = -0.25 \text{ m} - 0.25 \text{ m} = -0.5 \text{ m} \][/tex]
Thus,
[tex]\[ \Delta V = (-20 \text{ N/C}) \times (-0.5 \text{ m}) = 10 \text{ V} \][/tex]
#### Step 3: Calculate the Charge [tex]\( q \)[/tex]
Using the energy equation involving electric potential:
[tex]\[ \text{Energy} = q \cdot \Delta V \][/tex]
Rearrange to solve for [tex]\( q \)[/tex]:
[tex]\[ q = \frac{\text{Energy}}{\Delta V} \][/tex]
Substitute the values:
[tex]\[ q = \frac{0.01 \text{ J}}{10 \text{ V}} = 0.001 \text{ C} \][/tex]
### Final Answer:
- The potential difference (Voltage) is [tex]\( 10 \text{ V} \)[/tex].
- The charge [tex]\( q \)[/tex] is [tex]\( 0.001 \text{ C} \)[/tex].
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Thank you for trusting IDNLearn.com with your questions. Visit us again for clear, concise, and accurate answers.