IDNLearn.com: Your trusted source for finding accurate answers. Join our platform to receive prompt and accurate responses from experienced professionals in various fields.
Sagot :
To determine for how many integers [tex]\( n \)[/tex] the expression
[tex]\[ \sqrt{\frac{\log \left(n^2\right) - (\log n)^2}{\log n - 3}} \][/tex]
is a real number, let's analyze the expression step by step.
1. Start by simplifying the expression inside the square root:
[tex]\[ \sqrt{\frac{\log \left(n^2\right) - (\log n)^2}{\log n - 3}} \][/tex]
Recall that [tex]\( \log(n^2) = 2\log(n) \)[/tex]. Substituting this into the expression, we get:
[tex]\[ \sqrt{\frac{2\log(n) - (\log n)^2}{\log n - 3}} \][/tex]
2. Let's introduce a new variable to simplify the notation. Let [tex]\( y = \log n \)[/tex]. Then the expression becomes:
[tex]\[ \sqrt{\frac{2y - y^2}{y - 3}} \][/tex]
3. The expression inside the square root, [tex]\(\frac{2y - y^2}{y - 3}\)[/tex], must be non-negative for the entire expression to be a real number. So, we need to solve the inequality:
[tex]\[ \frac{2y - y^2}{y - 3} \geq 0 \][/tex]
4. Factor the numerator to get:
[tex]\[ 2y - y^2 = y(2 - y) \][/tex]
Hence, the inequality can be rewritten as:
[tex]\[ \frac{y(2 - y)}{y - 3} \geq 0 \][/tex]
5. Determine the critical points where the expression could potentially change sign. These are the points where the numerator or denominator is zero:
- [tex]\( y = 0 \)[/tex] (numerator)
- [tex]\( y = 2 \)[/tex] (numerator)
- [tex]\( y = 3 \)[/tex] (denominator)
6. Analyze the sign changes around these critical points:
- For [tex]\( y < 0 \)[/tex]: [tex]\( y(2 - y) \)[/tex] is positive, and [tex]\( y - 3 \)[/tex] is negative, so the overall fraction is negative.
- For [tex]\( 0 < y < 2 \)[/tex]: [tex]\( y(2 - y) \)[/tex] is positive, and [tex]\( y - 3 \)[/tex] is negative, so the overall fraction is negative.
- For [tex]\( 2 < y < 3 \)[/tex]: [tex]\( y(2 - y) \)[/tex] is negative, and [tex]\( y - 3 \)[/tex] is negative, so the overall fraction is positive.
- For [tex]\( y > 3 \)[/tex]: [tex]\( y(2 - y) \)[/tex] is negative, and [tex]\( y - 3 \)[/tex] is positive, so the overall fraction is negative.
7. Therefore, the expression [tex]\(\frac{y(2 - y)}{y - 3}\)[/tex] is only non-negative when [tex]\( 2 < y < 3 \)[/tex].
8. Since [tex]\( y = \log n \)[/tex], we need:
[tex]\[ 2 < \log n < 3 \][/tex]
9. Converting this inequality back in terms of [tex]\( n \)[/tex]:
[tex]\[ 10^2 < n < 10^3 \][/tex]
Thus:
[tex]\[ 100 < n < 1000 \][/tex]
10. Thus, [tex]\( n \)[/tex] must be an integer between 101 and 999. The total number of integers [tex]\( n \)[/tex] that satisfy this condition is:
[tex]\[ 999 - 101 + 1 = 899 \][/tex]
Therefore, the expression represents a real number for 899 integers [tex]\( n \)[/tex].
[tex]\[ \sqrt{\frac{\log \left(n^2\right) - (\log n)^2}{\log n - 3}} \][/tex]
is a real number, let's analyze the expression step by step.
1. Start by simplifying the expression inside the square root:
[tex]\[ \sqrt{\frac{\log \left(n^2\right) - (\log n)^2}{\log n - 3}} \][/tex]
Recall that [tex]\( \log(n^2) = 2\log(n) \)[/tex]. Substituting this into the expression, we get:
[tex]\[ \sqrt{\frac{2\log(n) - (\log n)^2}{\log n - 3}} \][/tex]
2. Let's introduce a new variable to simplify the notation. Let [tex]\( y = \log n \)[/tex]. Then the expression becomes:
[tex]\[ \sqrt{\frac{2y - y^2}{y - 3}} \][/tex]
3. The expression inside the square root, [tex]\(\frac{2y - y^2}{y - 3}\)[/tex], must be non-negative for the entire expression to be a real number. So, we need to solve the inequality:
[tex]\[ \frac{2y - y^2}{y - 3} \geq 0 \][/tex]
4. Factor the numerator to get:
[tex]\[ 2y - y^2 = y(2 - y) \][/tex]
Hence, the inequality can be rewritten as:
[tex]\[ \frac{y(2 - y)}{y - 3} \geq 0 \][/tex]
5. Determine the critical points where the expression could potentially change sign. These are the points where the numerator or denominator is zero:
- [tex]\( y = 0 \)[/tex] (numerator)
- [tex]\( y = 2 \)[/tex] (numerator)
- [tex]\( y = 3 \)[/tex] (denominator)
6. Analyze the sign changes around these critical points:
- For [tex]\( y < 0 \)[/tex]: [tex]\( y(2 - y) \)[/tex] is positive, and [tex]\( y - 3 \)[/tex] is negative, so the overall fraction is negative.
- For [tex]\( 0 < y < 2 \)[/tex]: [tex]\( y(2 - y) \)[/tex] is positive, and [tex]\( y - 3 \)[/tex] is negative, so the overall fraction is negative.
- For [tex]\( 2 < y < 3 \)[/tex]: [tex]\( y(2 - y) \)[/tex] is negative, and [tex]\( y - 3 \)[/tex] is negative, so the overall fraction is positive.
- For [tex]\( y > 3 \)[/tex]: [tex]\( y(2 - y) \)[/tex] is negative, and [tex]\( y - 3 \)[/tex] is positive, so the overall fraction is negative.
7. Therefore, the expression [tex]\(\frac{y(2 - y)}{y - 3}\)[/tex] is only non-negative when [tex]\( 2 < y < 3 \)[/tex].
8. Since [tex]\( y = \log n \)[/tex], we need:
[tex]\[ 2 < \log n < 3 \][/tex]
9. Converting this inequality back in terms of [tex]\( n \)[/tex]:
[tex]\[ 10^2 < n < 10^3 \][/tex]
Thus:
[tex]\[ 100 < n < 1000 \][/tex]
10. Thus, [tex]\( n \)[/tex] must be an integer between 101 and 999. The total number of integers [tex]\( n \)[/tex] that satisfy this condition is:
[tex]\[ 999 - 101 + 1 = 899 \][/tex]
Therefore, the expression represents a real number for 899 integers [tex]\( n \)[/tex].
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Thank you for visiting IDNLearn.com. We’re here to provide accurate and reliable answers, so visit us again soon.