IDNLearn.com provides a collaborative environment for finding accurate answers. Get thorough and trustworthy answers to your queries from our extensive network of knowledgeable professionals.
Sagot :
Certainly! To determine [tex]\( P_x(1400, 1800) \)[/tex] and [tex]\( P_y(1400, 1800) \)[/tex], we first need to define what [tex]\( P_x \)[/tex] and [tex]\( P_y \)[/tex] are. [tex]\( P_x \)[/tex] and [tex]\( P_y \)[/tex] denote the partial derivatives of profit with respect to [tex]\( x \)[/tex] and [tex]\( y \)[/tex] respectively, where profit [tex]\( P \)[/tex] is defined as the difference between revenue [tex]\( R \)[/tex] and cost [tex]\( C \)[/tex].
Given the functions for revenue [tex]\( R(x, y) \)[/tex] and cost [tex]\( C(x, y) \)[/tex],
[tex]\[ R(x, y) = 140x + 180y + 0.03xy - 0.07x^2 - 0.02y^2 \][/tex]
[tex]\[ C(x, y) = 3x + 4y + 20,000 \][/tex]
Profit [tex]\( P(x, y) \)[/tex] can be expressed as:
[tex]\[ P(x, y) = R(x, y) - C(x, y) \][/tex]
To find [tex]\( P_x \)[/tex] and [tex]\( P_y \)[/tex], we start by computing the partial derivatives of [tex]\( R \)[/tex] and [tex]\( C \)[/tex] with respect to [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
### Step-by-Step Solution:
1. Partial derivative of [tex]\( R \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ R_x = \frac{\partial R}{\partial x} = 140 + 0.03y - 0.14x \][/tex]
2. Partial derivative of [tex]\( R \)[/tex] with respect to [tex]\( y \)[/tex]:
[tex]\[ R_y = \frac{\partial R}{\partial y} = 180 + 0.03x - 0.04y \][/tex]
3. Partial derivative of [tex]\( C \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ C_x = \frac{\partial C}{\partial x} = 3 \][/tex]
4. Partial derivative of [tex]\( C \)[/tex] with respect to [tex]\( y \)[/tex]:
[tex]\[ C_y = \frac{\partial C}{\partial y} = 4 \][/tex]
Now, the partial derivatives of the profit function [tex]\( P \)[/tex] at the point [tex]\((x, y)=(1400, 1800)\)[/tex] can be found by substituting [tex]\( x = 1400 \)[/tex] and [tex]\( y = 1800 \)[/tex] into the expressions for [tex]\( R_x \)[/tex] and [tex]\( R_y \)[/tex]:
### Calculating [tex]\( P_x \)[/tex] at [tex]\((1400, 1800)\)[/tex]:
[tex]\[ P_x = R_x - C_x \][/tex]
Substituting [tex]\( x = 1400 \)[/tex] and [tex]\( y = 1800 \)[/tex] into [tex]\( R_x \)[/tex]:
[tex]\[ R_x = 140 + 0.03(1800) - 0.14(1400) = 140 + 54 - 196 = -2 \][/tex]
[tex]\[ C_x = 3 \][/tex]
Thus,
[tex]\[ P_x = R_x - C_x = -2 - 3 = -5 \][/tex]
So, [tex]\( P_x(1400, 1800) = -5 \)[/tex].
### Calculating [tex]\( P_y \)[/tex] at [tex]\((1400, 1800)\)[/tex]:
[tex]\[ P_y = R_y - C_y \][/tex]
Substituting [tex]\( x = 1400 \)[/tex] and [tex]\( y = 1800 \)[/tex] into [tex]\( R_y \)[/tex]:
[tex]\[ R_y = 180 + 0.03(1400) - 0.04(1800) = 180 + 42 - 72 = 150 \][/tex]
[tex]\[ C_y = 4 \][/tex]
Thus,
[tex]\[ P_y = R_y - C_y = 150 - 4 = 146 \][/tex]
So, [tex]\( P_y(1400, 1800) = 146 \)[/tex].
### Interpretation of Results:
- [tex]\( P_x(1400, 1800) = -5 \)[/tex] implies that, at the production level of 1400 type [tex]\( A \)[/tex] calculators and 1800 type [tex]\( B \)[/tex] calculators, increasing the production of type [tex]\( A \)[/tex] calculators by one unit is expected to decrease the profit by 5 units.
- [tex]\( P_y(1400, 1800) = 146 \)[/tex] implies that, at the same production level, increasing the production of type [tex]\( B \)[/tex] calculators by one unit is expected to increase the profit by 146 units.
These partial derivatives provide a measure of the sensitivity of profit to changes in the production quantities of each type of calculator.
Given the functions for revenue [tex]\( R(x, y) \)[/tex] and cost [tex]\( C(x, y) \)[/tex],
[tex]\[ R(x, y) = 140x + 180y + 0.03xy - 0.07x^2 - 0.02y^2 \][/tex]
[tex]\[ C(x, y) = 3x + 4y + 20,000 \][/tex]
Profit [tex]\( P(x, y) \)[/tex] can be expressed as:
[tex]\[ P(x, y) = R(x, y) - C(x, y) \][/tex]
To find [tex]\( P_x \)[/tex] and [tex]\( P_y \)[/tex], we start by computing the partial derivatives of [tex]\( R \)[/tex] and [tex]\( C \)[/tex] with respect to [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
### Step-by-Step Solution:
1. Partial derivative of [tex]\( R \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ R_x = \frac{\partial R}{\partial x} = 140 + 0.03y - 0.14x \][/tex]
2. Partial derivative of [tex]\( R \)[/tex] with respect to [tex]\( y \)[/tex]:
[tex]\[ R_y = \frac{\partial R}{\partial y} = 180 + 0.03x - 0.04y \][/tex]
3. Partial derivative of [tex]\( C \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ C_x = \frac{\partial C}{\partial x} = 3 \][/tex]
4. Partial derivative of [tex]\( C \)[/tex] with respect to [tex]\( y \)[/tex]:
[tex]\[ C_y = \frac{\partial C}{\partial y} = 4 \][/tex]
Now, the partial derivatives of the profit function [tex]\( P \)[/tex] at the point [tex]\((x, y)=(1400, 1800)\)[/tex] can be found by substituting [tex]\( x = 1400 \)[/tex] and [tex]\( y = 1800 \)[/tex] into the expressions for [tex]\( R_x \)[/tex] and [tex]\( R_y \)[/tex]:
### Calculating [tex]\( P_x \)[/tex] at [tex]\((1400, 1800)\)[/tex]:
[tex]\[ P_x = R_x - C_x \][/tex]
Substituting [tex]\( x = 1400 \)[/tex] and [tex]\( y = 1800 \)[/tex] into [tex]\( R_x \)[/tex]:
[tex]\[ R_x = 140 + 0.03(1800) - 0.14(1400) = 140 + 54 - 196 = -2 \][/tex]
[tex]\[ C_x = 3 \][/tex]
Thus,
[tex]\[ P_x = R_x - C_x = -2 - 3 = -5 \][/tex]
So, [tex]\( P_x(1400, 1800) = -5 \)[/tex].
### Calculating [tex]\( P_y \)[/tex] at [tex]\((1400, 1800)\)[/tex]:
[tex]\[ P_y = R_y - C_y \][/tex]
Substituting [tex]\( x = 1400 \)[/tex] and [tex]\( y = 1800 \)[/tex] into [tex]\( R_y \)[/tex]:
[tex]\[ R_y = 180 + 0.03(1400) - 0.04(1800) = 180 + 42 - 72 = 150 \][/tex]
[tex]\[ C_y = 4 \][/tex]
Thus,
[tex]\[ P_y = R_y - C_y = 150 - 4 = 146 \][/tex]
So, [tex]\( P_y(1400, 1800) = 146 \)[/tex].
### Interpretation of Results:
- [tex]\( P_x(1400, 1800) = -5 \)[/tex] implies that, at the production level of 1400 type [tex]\( A \)[/tex] calculators and 1800 type [tex]\( B \)[/tex] calculators, increasing the production of type [tex]\( A \)[/tex] calculators by one unit is expected to decrease the profit by 5 units.
- [tex]\( P_y(1400, 1800) = 146 \)[/tex] implies that, at the same production level, increasing the production of type [tex]\( B \)[/tex] calculators by one unit is expected to increase the profit by 146 units.
These partial derivatives provide a measure of the sensitivity of profit to changes in the production quantities of each type of calculator.
Thank you for participating in our discussion. We value every contribution. Keep sharing knowledge and helping others find the answers they need. Let's create a dynamic and informative learning environment together. For trustworthy answers, rely on IDNLearn.com. Thanks for visiting, and we look forward to assisting you again.