Get expert insights and community support for your questions on IDNLearn.com. Our platform offers comprehensive and accurate responses to help you make informed decisions on any topic.

Consider the following equations:

[tex]
\begin{array}{l}
f(x)=\frac{x^2+2 x+2}{x+8} \\
g(x)=\frac{x-1}{x}
\end{array}
[/tex]

Approximate the solution to the equation [tex]f(x) = g(x)[/tex] using three iterations of successive approximation. Use the graph as a starting point.

Select the approximate value for the solution to the equation from the table below.


Sagot :

Let's approximate the solution to the equation [tex]\( f(x) = g(x) \)[/tex] using three iterations of successive approximation.

Given:
[tex]\[ f(x) = \frac{x^2 + 2x + 2}{x + 8} \][/tex]
[tex]\[ g(x) = \frac{x - 1}{x} \][/tex]

We'll start the successive approximation process with an initial guess for [tex]\( x \)[/tex] based on the graph. Let's assume our initial guess is [tex]\( x_0 = 1.5 \)[/tex].

### Iteration 1
1. Calculate [tex]\( f(x_0) \)[/tex]:
[tex]\[ f(1.5) = \frac{(1.5)^2 + 2(1.5) + 2}{1.5 + 8} = \frac{2.25 + 3 + 2}{9.5} = \frac{7.25}{9.5} \approx 0.763 \][/tex]

2. Calculate [tex]\( g(x_0) \)[/tex]:
[tex]\[ g(1.5) = \frac{1.5 - 1}{1.5} = \frac{0.5}{1.5} \approx 0.333 \][/tex]

3. Compute the new [tex]\( x_1 \)[/tex] using the average of [tex]\( f(x_0) \)[/tex] and [tex]\( g(x_0) \)[/tex]:
[tex]\[ x_1 = \frac{f(x_0) + g(x_0)}{2} = \frac{0.763 + 0.333}{2} \approx 0.548 \][/tex]

### Iteration 2
1. Update [tex]\( x_0 = x_1 \)[/tex]. Now, [tex]\( x_0 \approx 0.548 \)[/tex].

2. Calculate [tex]\( f(x_0) \)[/tex]:
[tex]\[ f(0.548) = \frac{(0.548)^2 + 2(0.548) + 2}{0.548 + 8} = \frac{0.300304 + 1.096 + 2}{8.548} = \frac{3.396304}{8.548} \approx 0.397 \][/tex]

3. Calculate [tex]\( g(x_0) \)[/tex]:
[tex]\[ g(0.548) = \frac{0.548 - 1}{0.548} = \frac{-0.452}{0.548} \approx -0.825 \][/tex]

4. Compute the new [tex]\( x_1 \)[/tex] using the average of [tex]\( f(x_0) \)[/tex] and [tex]\( g(x_0) \)[/tex]:
[tex]\[ x_1 = \frac{f(x_0) + g(x_0)}{2} = \frac{0.397 + (-0.825)}{2} \approx -0.214 \][/tex]

### Iteration 3
1. Update [tex]\( x_0 = x_1 \)[/tex]. Now, [tex]\( x_0 \approx -0.214 \)[/tex].

2. Calculate [tex]\( f(x_0) \)[/tex]:
[tex]\[ f(-0.214) = \frac{(-0.214)^2 + 2(-0.214) + 2}{-0.214 + 8} = \frac{0.045796 + (-0.428) + 2}{7.786} = \frac{1.617796}{7.786} \approx 0.208 \][/tex]

3. Calculate [tex]\( g(x_0) \)[/tex]:
[tex]\[ g(-0.214) = \frac{-0.214 - 1}{-0.214} = \frac{-1.214}{-0.214} \approx 5.673 \][/tex]

4. Compute the new [tex]\( x_1 \)[/tex] using the average of [tex]\( f(x_0) \)[/tex] and [tex]\( g(x_0) \)[/tex]:
[tex]\[ x_1 = \frac{f(x_0) + g(x_0)}{2} = \frac{0.208 + 5.673}{2} \approx 2.941 \][/tex]

After three iterations, the successive approximation process yields an approximate solution of [tex]\( x \approx 2.948 \)[/tex].

Therefore, the approximate value of the solution to the equation [tex]\( f(x) = g(x) \)[/tex] after three iterations is:
[tex]\[ \boxed{2.948} \][/tex]