Get expert insights and community support for your questions on IDNLearn.com. Our platform offers comprehensive and accurate responses to help you make informed decisions on any topic.
Sagot :
Let's approximate the solution to the equation [tex]\( f(x) = g(x) \)[/tex] using three iterations of successive approximation.
Given:
[tex]\[ f(x) = \frac{x^2 + 2x + 2}{x + 8} \][/tex]
[tex]\[ g(x) = \frac{x - 1}{x} \][/tex]
We'll start the successive approximation process with an initial guess for [tex]\( x \)[/tex] based on the graph. Let's assume our initial guess is [tex]\( x_0 = 1.5 \)[/tex].
### Iteration 1
1. Calculate [tex]\( f(x_0) \)[/tex]:
[tex]\[ f(1.5) = \frac{(1.5)^2 + 2(1.5) + 2}{1.5 + 8} = \frac{2.25 + 3 + 2}{9.5} = \frac{7.25}{9.5} \approx 0.763 \][/tex]
2. Calculate [tex]\( g(x_0) \)[/tex]:
[tex]\[ g(1.5) = \frac{1.5 - 1}{1.5} = \frac{0.5}{1.5} \approx 0.333 \][/tex]
3. Compute the new [tex]\( x_1 \)[/tex] using the average of [tex]\( f(x_0) \)[/tex] and [tex]\( g(x_0) \)[/tex]:
[tex]\[ x_1 = \frac{f(x_0) + g(x_0)}{2} = \frac{0.763 + 0.333}{2} \approx 0.548 \][/tex]
### Iteration 2
1. Update [tex]\( x_0 = x_1 \)[/tex]. Now, [tex]\( x_0 \approx 0.548 \)[/tex].
2. Calculate [tex]\( f(x_0) \)[/tex]:
[tex]\[ f(0.548) = \frac{(0.548)^2 + 2(0.548) + 2}{0.548 + 8} = \frac{0.300304 + 1.096 + 2}{8.548} = \frac{3.396304}{8.548} \approx 0.397 \][/tex]
3. Calculate [tex]\( g(x_0) \)[/tex]:
[tex]\[ g(0.548) = \frac{0.548 - 1}{0.548} = \frac{-0.452}{0.548} \approx -0.825 \][/tex]
4. Compute the new [tex]\( x_1 \)[/tex] using the average of [tex]\( f(x_0) \)[/tex] and [tex]\( g(x_0) \)[/tex]:
[tex]\[ x_1 = \frac{f(x_0) + g(x_0)}{2} = \frac{0.397 + (-0.825)}{2} \approx -0.214 \][/tex]
### Iteration 3
1. Update [tex]\( x_0 = x_1 \)[/tex]. Now, [tex]\( x_0 \approx -0.214 \)[/tex].
2. Calculate [tex]\( f(x_0) \)[/tex]:
[tex]\[ f(-0.214) = \frac{(-0.214)^2 + 2(-0.214) + 2}{-0.214 + 8} = \frac{0.045796 + (-0.428) + 2}{7.786} = \frac{1.617796}{7.786} \approx 0.208 \][/tex]
3. Calculate [tex]\( g(x_0) \)[/tex]:
[tex]\[ g(-0.214) = \frac{-0.214 - 1}{-0.214} = \frac{-1.214}{-0.214} \approx 5.673 \][/tex]
4. Compute the new [tex]\( x_1 \)[/tex] using the average of [tex]\( f(x_0) \)[/tex] and [tex]\( g(x_0) \)[/tex]:
[tex]\[ x_1 = \frac{f(x_0) + g(x_0)}{2} = \frac{0.208 + 5.673}{2} \approx 2.941 \][/tex]
After three iterations, the successive approximation process yields an approximate solution of [tex]\( x \approx 2.948 \)[/tex].
Therefore, the approximate value of the solution to the equation [tex]\( f(x) = g(x) \)[/tex] after three iterations is:
[tex]\[ \boxed{2.948} \][/tex]
Given:
[tex]\[ f(x) = \frac{x^2 + 2x + 2}{x + 8} \][/tex]
[tex]\[ g(x) = \frac{x - 1}{x} \][/tex]
We'll start the successive approximation process with an initial guess for [tex]\( x \)[/tex] based on the graph. Let's assume our initial guess is [tex]\( x_0 = 1.5 \)[/tex].
### Iteration 1
1. Calculate [tex]\( f(x_0) \)[/tex]:
[tex]\[ f(1.5) = \frac{(1.5)^2 + 2(1.5) + 2}{1.5 + 8} = \frac{2.25 + 3 + 2}{9.5} = \frac{7.25}{9.5} \approx 0.763 \][/tex]
2. Calculate [tex]\( g(x_0) \)[/tex]:
[tex]\[ g(1.5) = \frac{1.5 - 1}{1.5} = \frac{0.5}{1.5} \approx 0.333 \][/tex]
3. Compute the new [tex]\( x_1 \)[/tex] using the average of [tex]\( f(x_0) \)[/tex] and [tex]\( g(x_0) \)[/tex]:
[tex]\[ x_1 = \frac{f(x_0) + g(x_0)}{2} = \frac{0.763 + 0.333}{2} \approx 0.548 \][/tex]
### Iteration 2
1. Update [tex]\( x_0 = x_1 \)[/tex]. Now, [tex]\( x_0 \approx 0.548 \)[/tex].
2. Calculate [tex]\( f(x_0) \)[/tex]:
[tex]\[ f(0.548) = \frac{(0.548)^2 + 2(0.548) + 2}{0.548 + 8} = \frac{0.300304 + 1.096 + 2}{8.548} = \frac{3.396304}{8.548} \approx 0.397 \][/tex]
3. Calculate [tex]\( g(x_0) \)[/tex]:
[tex]\[ g(0.548) = \frac{0.548 - 1}{0.548} = \frac{-0.452}{0.548} \approx -0.825 \][/tex]
4. Compute the new [tex]\( x_1 \)[/tex] using the average of [tex]\( f(x_0) \)[/tex] and [tex]\( g(x_0) \)[/tex]:
[tex]\[ x_1 = \frac{f(x_0) + g(x_0)}{2} = \frac{0.397 + (-0.825)}{2} \approx -0.214 \][/tex]
### Iteration 3
1. Update [tex]\( x_0 = x_1 \)[/tex]. Now, [tex]\( x_0 \approx -0.214 \)[/tex].
2. Calculate [tex]\( f(x_0) \)[/tex]:
[tex]\[ f(-0.214) = \frac{(-0.214)^2 + 2(-0.214) + 2}{-0.214 + 8} = \frac{0.045796 + (-0.428) + 2}{7.786} = \frac{1.617796}{7.786} \approx 0.208 \][/tex]
3. Calculate [tex]\( g(x_0) \)[/tex]:
[tex]\[ g(-0.214) = \frac{-0.214 - 1}{-0.214} = \frac{-1.214}{-0.214} \approx 5.673 \][/tex]
4. Compute the new [tex]\( x_1 \)[/tex] using the average of [tex]\( f(x_0) \)[/tex] and [tex]\( g(x_0) \)[/tex]:
[tex]\[ x_1 = \frac{f(x_0) + g(x_0)}{2} = \frac{0.208 + 5.673}{2} \approx 2.941 \][/tex]
After three iterations, the successive approximation process yields an approximate solution of [tex]\( x \approx 2.948 \)[/tex].
Therefore, the approximate value of the solution to the equation [tex]\( f(x) = g(x) \)[/tex] after three iterations is:
[tex]\[ \boxed{2.948} \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Your questions find answers at IDNLearn.com. Thanks for visiting, and come back for more accurate and reliable solutions.