IDNLearn.com is designed to help you find reliable answers quickly and easily. Our community is here to provide detailed and trustworthy answers to any questions you may have.

In Exercises 26-37, give an algebraic specification for the null space and the range of the given matrix [tex]\(A\)[/tex].

26. [tex]\(A=\left[\begin{array}{rr}1 & -2 \\ -3 & 6\end{array}\right]\)[/tex]

27. [tex]\(A=\left[\begin{array}{rr}-1 & 3 \\ 2 & -6\end{array}\right]\)[/tex]

28. [tex]\(A=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]\)[/tex]

29. [tex]\(A=\left[\begin{array}{ll}1 & 1 \\ 2 & 5\end{array}\right]\)[/tex]

30. [tex]\(A=\left[\begin{array}{lll}1 & -1 & 2 \\ 2 & -1 & 5\end{array}\right]\)[/tex]

31. [tex]\(A=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 6 & 4\end{array}\right]\)[/tex]

32. [tex]\(A=\left[\begin{array}{ll}1 & 3 \\ 2 & 7 \\ 1 & 5\end{array}\right]\)[/tex]

33. [tex]\(A=\left[\begin{array}{ll}0 & 1 \\ 0 & 2 \\ 0 & 3\end{array}\right]\)[/tex]

34. [tex]\(A=\left[\begin{array}{rrr}1 & -2 & 1 \\ 2 & -3 & 5 \\ 1 & 0 & 7\end{array}\right]\)[/tex]

35. [tex]\(A=\left[\begin{array}{rrr}1 & 2 & 3 \\ 1 & 3 & 1 \\ 2 & 2 & 10\end{array}\right]\)[/tex]

36. [tex]\(A=\left[\begin{array}{rrr}1 & 0 & -1 \\ -1 & 1 & 2 \\ 1 & 2 & 2\end{array}\right]\)[/tex]

37. [tex]\(A=\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 5 & 4 \\ 1 & 3 & 4\end{array}\right]\)[/tex]


Sagot :

Let's focus on exercise 26:

Given the matrix
[tex]\[ A = \begin{pmatrix} 1 & -2 \\ -3 & 6 \end{pmatrix} \][/tex]

To find the null space (the set of vectors [tex]\(x\)[/tex] such that [tex]\(Ax=0\)[/tex]) and the range (the column space of [tex]\(A\)[/tex]), we can proceed step by step as follows:

### Finding the Null Space

The null space of a matrix [tex]\(A\)[/tex] consists of all vectors [tex]\(x\)[/tex] for which [tex]\(Ax = 0\)[/tex]. Let's denote [tex]\( x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \)[/tex]. Then we solve:

[tex]\[ A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ -3 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \][/tex]

This gives us a system of linear equations:
[tex]\[ 1x_1 - 2x_2 = 0 \][/tex]
[tex]\[ -3x_1 + 6x_2 = 0 \][/tex]

Both equations are essentially the same when simplified; the second is just the first multiplied by [tex]\(-3\)[/tex]. So, we can work with the first equation:

[tex]\[ x_1 - 2x_2 = 0 \][/tex]
[tex]\[ x_1 = 2x_2 \][/tex]

This tells us that all vectors in the null space are of the form:

[tex]\[ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2x_2 \\ x_2 \end{pmatrix} = x_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} \][/tex]

So, the null space of [tex]\(A\)[/tex] is spanned by the vector [tex]\( \begin{pmatrix} 2 \\ 1 \end{pmatrix} \)[/tex]. Normalizing this vector, we get:

[tex]\[ \begin{pmatrix} 2 \\ 1 \end{pmatrix} = c \begin{pmatrix} 0.89442719 \\ 0.4472136 \end{pmatrix} \][/tex]

where [tex]\(c\)[/tex] is a scalar.

### Finding the Range

The range (also known as the column space) of a matrix is the span of its column vectors. For matrix [tex]\( A \)[/tex], the columns are:

[tex]\[ \begin{pmatrix} 1 \\ -3 \end{pmatrix} \text{ and } \begin{pmatrix} -2 \\ 6 \end{pmatrix} \][/tex]

Both of these vectors are linearly dependent because [tex]\( \begin{pmatrix} -2 \\ 6 \end{pmatrix} \)[/tex] is a multiple of [tex]\(\begin{pmatrix} 1 \\ -3 \end{pmatrix} \)[/tex].

Thus, the range of [tex]\( A \)[/tex] is spanned by:

[tex]\[ \begin{pmatrix} 1 \\ -3 \end{pmatrix} \][/tex]

### Summary

- The null space of [tex]\( A \)[/tex] is spanned by the vector [tex]\( \begin{pmatrix} 0.89442719 \\ 0.4472136 \end{pmatrix} \)[/tex].
- The range of [tex]\( A \)[/tex] is spanned by the vector [tex]\( \begin{pmatrix} 1 \\ -3 \end{pmatrix} \)[/tex].

Lastly, the rank of matrix [tex]\( A \)[/tex], which is the dimension of the range, is [tex]\( 1 \)[/tex]. This indicates that there is only one independent column vector in [tex]\( A \)[/tex].