Discover a wealth of information and get your questions answered on IDNLearn.com. Ask anything and get well-informed, reliable answers from our knowledgeable community members.
Sagot :
Let's focus on exercise 26:
Given the matrix
[tex]\[ A = \begin{pmatrix} 1 & -2 \\ -3 & 6 \end{pmatrix} \][/tex]
To find the null space (the set of vectors [tex]\(x\)[/tex] such that [tex]\(Ax=0\)[/tex]) and the range (the column space of [tex]\(A\)[/tex]), we can proceed step by step as follows:
### Finding the Null Space
The null space of a matrix [tex]\(A\)[/tex] consists of all vectors [tex]\(x\)[/tex] for which [tex]\(Ax = 0\)[/tex]. Let's denote [tex]\( x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \)[/tex]. Then we solve:
[tex]\[ A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ -3 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \][/tex]
This gives us a system of linear equations:
[tex]\[ 1x_1 - 2x_2 = 0 \][/tex]
[tex]\[ -3x_1 + 6x_2 = 0 \][/tex]
Both equations are essentially the same when simplified; the second is just the first multiplied by [tex]\(-3\)[/tex]. So, we can work with the first equation:
[tex]\[ x_1 - 2x_2 = 0 \][/tex]
[tex]\[ x_1 = 2x_2 \][/tex]
This tells us that all vectors in the null space are of the form:
[tex]\[ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2x_2 \\ x_2 \end{pmatrix} = x_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} \][/tex]
So, the null space of [tex]\(A\)[/tex] is spanned by the vector [tex]\( \begin{pmatrix} 2 \\ 1 \end{pmatrix} \)[/tex]. Normalizing this vector, we get:
[tex]\[ \begin{pmatrix} 2 \\ 1 \end{pmatrix} = c \begin{pmatrix} 0.89442719 \\ 0.4472136 \end{pmatrix} \][/tex]
where [tex]\(c\)[/tex] is a scalar.
### Finding the Range
The range (also known as the column space) of a matrix is the span of its column vectors. For matrix [tex]\( A \)[/tex], the columns are:
[tex]\[ \begin{pmatrix} 1 \\ -3 \end{pmatrix} \text{ and } \begin{pmatrix} -2 \\ 6 \end{pmatrix} \][/tex]
Both of these vectors are linearly dependent because [tex]\( \begin{pmatrix} -2 \\ 6 \end{pmatrix} \)[/tex] is a multiple of [tex]\(\begin{pmatrix} 1 \\ -3 \end{pmatrix} \)[/tex].
Thus, the range of [tex]\( A \)[/tex] is spanned by:
[tex]\[ \begin{pmatrix} 1 \\ -3 \end{pmatrix} \][/tex]
### Summary
- The null space of [tex]\( A \)[/tex] is spanned by the vector [tex]\( \begin{pmatrix} 0.89442719 \\ 0.4472136 \end{pmatrix} \)[/tex].
- The range of [tex]\( A \)[/tex] is spanned by the vector [tex]\( \begin{pmatrix} 1 \\ -3 \end{pmatrix} \)[/tex].
Lastly, the rank of matrix [tex]\( A \)[/tex], which is the dimension of the range, is [tex]\( 1 \)[/tex]. This indicates that there is only one independent column vector in [tex]\( A \)[/tex].
Given the matrix
[tex]\[ A = \begin{pmatrix} 1 & -2 \\ -3 & 6 \end{pmatrix} \][/tex]
To find the null space (the set of vectors [tex]\(x\)[/tex] such that [tex]\(Ax=0\)[/tex]) and the range (the column space of [tex]\(A\)[/tex]), we can proceed step by step as follows:
### Finding the Null Space
The null space of a matrix [tex]\(A\)[/tex] consists of all vectors [tex]\(x\)[/tex] for which [tex]\(Ax = 0\)[/tex]. Let's denote [tex]\( x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \)[/tex]. Then we solve:
[tex]\[ A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ -3 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \][/tex]
This gives us a system of linear equations:
[tex]\[ 1x_1 - 2x_2 = 0 \][/tex]
[tex]\[ -3x_1 + 6x_2 = 0 \][/tex]
Both equations are essentially the same when simplified; the second is just the first multiplied by [tex]\(-3\)[/tex]. So, we can work with the first equation:
[tex]\[ x_1 - 2x_2 = 0 \][/tex]
[tex]\[ x_1 = 2x_2 \][/tex]
This tells us that all vectors in the null space are of the form:
[tex]\[ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2x_2 \\ x_2 \end{pmatrix} = x_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} \][/tex]
So, the null space of [tex]\(A\)[/tex] is spanned by the vector [tex]\( \begin{pmatrix} 2 \\ 1 \end{pmatrix} \)[/tex]. Normalizing this vector, we get:
[tex]\[ \begin{pmatrix} 2 \\ 1 \end{pmatrix} = c \begin{pmatrix} 0.89442719 \\ 0.4472136 \end{pmatrix} \][/tex]
where [tex]\(c\)[/tex] is a scalar.
### Finding the Range
The range (also known as the column space) of a matrix is the span of its column vectors. For matrix [tex]\( A \)[/tex], the columns are:
[tex]\[ \begin{pmatrix} 1 \\ -3 \end{pmatrix} \text{ and } \begin{pmatrix} -2 \\ 6 \end{pmatrix} \][/tex]
Both of these vectors are linearly dependent because [tex]\( \begin{pmatrix} -2 \\ 6 \end{pmatrix} \)[/tex] is a multiple of [tex]\(\begin{pmatrix} 1 \\ -3 \end{pmatrix} \)[/tex].
Thus, the range of [tex]\( A \)[/tex] is spanned by:
[tex]\[ \begin{pmatrix} 1 \\ -3 \end{pmatrix} \][/tex]
### Summary
- The null space of [tex]\( A \)[/tex] is spanned by the vector [tex]\( \begin{pmatrix} 0.89442719 \\ 0.4472136 \end{pmatrix} \)[/tex].
- The range of [tex]\( A \)[/tex] is spanned by the vector [tex]\( \begin{pmatrix} 1 \\ -3 \end{pmatrix} \)[/tex].
Lastly, the rank of matrix [tex]\( A \)[/tex], which is the dimension of the range, is [tex]\( 1 \)[/tex]. This indicates that there is only one independent column vector in [tex]\( A \)[/tex].
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Find reliable answers at IDNLearn.com. Thanks for stopping by, and come back for more trustworthy solutions.