Engage with knowledgeable experts and get accurate answers on IDNLearn.com. Join our interactive Q&A community and get reliable, detailed answers from experienced professionals across a variety of topics.
Sagot :
Let's break down each part of the problem and solve them step-by-step.
### Part (a)
Evaluate the limit:
[tex]\[ \lim_{n \to \infty} \left(\frac{1}{n}\right)^{\frac{1}{n}} \][/tex]
1. Start by taking the natural logarithm of the expression:
[tex]\[ \ln\left[\left(\frac{1}{n}\right)^{\frac{1}{n}}\right] = \frac{1}{n} \ln\left(\frac{1}{n}\right) \][/tex]
2. Simplify the inside logarithm:
[tex]\[ \frac{1}{n} \ln\left(\frac{1}{n}\right) = \frac{1}{n} \cdot (-\ln(n)) = -\frac{\ln(n)}{n} \][/tex]
3. Evaluate the limit of the simplified expression as [tex]\( n \to \infty \)[/tex]:
[tex]\[ \lim_{n \to \infty} -\frac{\ln(n)}{n} \][/tex]
It's known that [tex]\(\frac{\ln(n)}{n} \)[/tex] approaches 0 as [tex]\( n \to \infty \)[/tex]:
[tex]\[ \lim_{n \to \infty} -\frac{\ln(n)}{n} = 0 \][/tex]
4. Therefore, the limit of the original expression becomes:
[tex]\[ e^0 = 1 \][/tex]
So, the limit is:
[tex]\[ 1 \][/tex]
### Part (b)
Evaluate the integral:
[tex]\[ \int_0^p e^{-x} \, dx \][/tex]
1. Compute the integral of [tex]\( e^{-x} \)[/tex]:
[tex]\[ \int e^{-x} \, dx = -e^{-x} + C \][/tex]
2. Evaluate the integral from 0 to [tex]\( p \)[/tex]:
[tex]\[ \left[ -e^{-x} \right]_{0}^{p} = -e^{-p} - (-e^{0}) \][/tex]
3. Simplify the expression:
[tex]\[ -e^{-p} + 1 = 1 - e^{-p} \][/tex]
So, the value of the integral is:
[tex]\[ 1 - e^{-p} \][/tex]
### Part (c)
Evaluate the limit:
[tex]\[ \lim_{n \to \infty} \left( \sqrt{n^2 - 1} - (n - 1) \right) \][/tex]
1. Rewrite the expression inside the limit:
[tex]\[ \sqrt{n^2 - 1} - (n - 1) = \sqrt{n^2 - 1} - n + 1 \][/tex]
2. Factor out [tex]\( n \)[/tex] from the square root using the expansion [tex]\(\sqrt{n^2 - 1} \approx n \sqrt{1 - \frac{1}{n^2}}\)[/tex]:
[tex]\[ \sqrt{n^2 - 1} \approx n \sqrt{1 - \frac{1}{n^2}} \approx n \left(1 - \frac{1}{2n^2}\right) \][/tex]
3. Substitute this approximation back into the original expression:
[tex]\[ n \left(1 - \frac{1}{2n^2}\right) - n + 1 = n - \frac{1}{2n} - n + 1 = 1 - \frac{1}{2n} \][/tex]
4. As [tex]\( n \to \infty \)[/tex]:
[tex]\[ \frac{1}{2n} \approaches 0 \][/tex]
So, the limit is:
[tex]\[ 1 \][/tex]
### Summary
(a) [tex]\[ \lim_{n \to \infty} \left(\frac{1}{n}\right)^{\frac{1}{n}} = 1 \][/tex]
(b) [tex]\[ \int_0^p e^{-x} \, dx = 1 - e^{-p} \][/tex]
(c) [tex]\[ \lim_{n \to \infty} \left( \sqrt{n^2 - 1} - (n - 1) \right) = 1 \][/tex]
### Part (a)
Evaluate the limit:
[tex]\[ \lim_{n \to \infty} \left(\frac{1}{n}\right)^{\frac{1}{n}} \][/tex]
1. Start by taking the natural logarithm of the expression:
[tex]\[ \ln\left[\left(\frac{1}{n}\right)^{\frac{1}{n}}\right] = \frac{1}{n} \ln\left(\frac{1}{n}\right) \][/tex]
2. Simplify the inside logarithm:
[tex]\[ \frac{1}{n} \ln\left(\frac{1}{n}\right) = \frac{1}{n} \cdot (-\ln(n)) = -\frac{\ln(n)}{n} \][/tex]
3. Evaluate the limit of the simplified expression as [tex]\( n \to \infty \)[/tex]:
[tex]\[ \lim_{n \to \infty} -\frac{\ln(n)}{n} \][/tex]
It's known that [tex]\(\frac{\ln(n)}{n} \)[/tex] approaches 0 as [tex]\( n \to \infty \)[/tex]:
[tex]\[ \lim_{n \to \infty} -\frac{\ln(n)}{n} = 0 \][/tex]
4. Therefore, the limit of the original expression becomes:
[tex]\[ e^0 = 1 \][/tex]
So, the limit is:
[tex]\[ 1 \][/tex]
### Part (b)
Evaluate the integral:
[tex]\[ \int_0^p e^{-x} \, dx \][/tex]
1. Compute the integral of [tex]\( e^{-x} \)[/tex]:
[tex]\[ \int e^{-x} \, dx = -e^{-x} + C \][/tex]
2. Evaluate the integral from 0 to [tex]\( p \)[/tex]:
[tex]\[ \left[ -e^{-x} \right]_{0}^{p} = -e^{-p} - (-e^{0}) \][/tex]
3. Simplify the expression:
[tex]\[ -e^{-p} + 1 = 1 - e^{-p} \][/tex]
So, the value of the integral is:
[tex]\[ 1 - e^{-p} \][/tex]
### Part (c)
Evaluate the limit:
[tex]\[ \lim_{n \to \infty} \left( \sqrt{n^2 - 1} - (n - 1) \right) \][/tex]
1. Rewrite the expression inside the limit:
[tex]\[ \sqrt{n^2 - 1} - (n - 1) = \sqrt{n^2 - 1} - n + 1 \][/tex]
2. Factor out [tex]\( n \)[/tex] from the square root using the expansion [tex]\(\sqrt{n^2 - 1} \approx n \sqrt{1 - \frac{1}{n^2}}\)[/tex]:
[tex]\[ \sqrt{n^2 - 1} \approx n \sqrt{1 - \frac{1}{n^2}} \approx n \left(1 - \frac{1}{2n^2}\right) \][/tex]
3. Substitute this approximation back into the original expression:
[tex]\[ n \left(1 - \frac{1}{2n^2}\right) - n + 1 = n - \frac{1}{2n} - n + 1 = 1 - \frac{1}{2n} \][/tex]
4. As [tex]\( n \to \infty \)[/tex]:
[tex]\[ \frac{1}{2n} \approaches 0 \][/tex]
So, the limit is:
[tex]\[ 1 \][/tex]
### Summary
(a) [tex]\[ \lim_{n \to \infty} \left(\frac{1}{n}\right)^{\frac{1}{n}} = 1 \][/tex]
(b) [tex]\[ \int_0^p e^{-x} \, dx = 1 - e^{-p} \][/tex]
(c) [tex]\[ \lim_{n \to \infty} \left( \sqrt{n^2 - 1} - (n - 1) \right) = 1 \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Find clear answers at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.