IDNLearn.com: Your reliable source for finding precise answers. Get accurate and comprehensive answers to your questions from our community of knowledgeable professionals.

(a) (3 points) Show work and set up the integral to determine the length of the function [tex]$f(x) = e^x \ln(x)$[/tex] between [tex]$x = 1$[/tex] and [tex]$x = 2$[/tex]. Do NOT evaluate.

(b) (3 points) Show work to convert the Cartesian coordinates [tex]$(\sqrt{2}, -\sqrt{2})$[/tex] into polar coordinates [tex]$(r, \theta)$[/tex] with [tex]$0 \leq \theta \leq 2\pi$[/tex] and [tex]$r \ \textgreater \ 0$[/tex].


Sagot :

### Part (a): Setting up the Integral to Determine the Arc Length
To find the length of the function [tex]\(f(x) = e^x \ln(x)\)[/tex] between [tex]\(x = 1\)[/tex] and [tex]\(x = 2\)[/tex], we use the arc length formula for a function [tex]\(y = f(x)\)[/tex].

The arc length [tex]\(L\)[/tex] of a curve [tex]\(y = f(x)\)[/tex] from [tex]\(x = a\)[/tex] to [tex]\(x = b\)[/tex] is given by:
[tex]\[ L = \int_a^b \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx \][/tex]

Here, [tex]\(f(x) = e^x \ln(x)\)[/tex]. First, we need to compute the derivative [tex]\(\frac{dy}{dx}\)[/tex].

1. Calculate the Derivative:
Using the product rule for differentiation:
[tex]\[ f(x) = e^x \ln(x) \Rightarrow \frac{dy}{dx} = \frac{d}{dx}(e^x \ln(x)) \][/tex]
[tex]\[ \frac{dy}{dx} = \ln(x) \cdot \frac{d}{dx}(e^x) + e^x \cdot \frac{d}{dx}(\ln(x)) \][/tex]
[tex]\[ \frac{dy}{dx} = \ln(x) \cdot e^x + e^x \cdot \frac{1}{x} \][/tex]
[tex]\[ \frac{dy}{dx} = e^x \ln(x) + \frac{e^x}{x} \][/tex]

2. Substitute and Set Up the Integral:
Now, plug this derivative into the arc length formula:
[tex]\[ L = \int_1^2 \sqrt{1 + \left( e^x \ln(x) + \frac{e^x}{x} \right)^2} \, dx \][/tex]

So, the integral that represents the length of the function [tex]\(f(x) = e^x \ln(x)\)[/tex] from [tex]\(x = 1\)[/tex] to [tex]\(x = 2\)[/tex] is:
[tex]\[ \boxed{L = \int_1^2 \sqrt{1 + \left( e^x \ln(x) + \frac{e^x}{x} \right)^2} \, dx} \][/tex]

### Part (b): Converting Cartesian Coordinates to Polar Coordinates
To convert the Cartesian coordinates [tex]\((\sqrt{2}, -\sqrt{2})\)[/tex] to polar coordinates [tex]\((r, \theta)\)[/tex], we use the formulas:
[tex]\[ r = \sqrt{x^2 + y^2} \][/tex]
[tex]\[ \theta = \arctan\left(\frac{y}{x}\right) \][/tex]

Given [tex]\(x = \sqrt{2}\)[/tex] and [tex]\(y = -\sqrt{2}\)[/tex]:

1. Calculate [tex]\(r\)[/tex]:
[tex]\[ r = \sqrt{(\sqrt{2})^2 + (-\sqrt{2})^2} \][/tex]
[tex]\[ r = \sqrt{2 + 2} \][/tex]
[tex]\[ r = \sqrt{4} \][/tex]
[tex]\[ r = 2 \][/tex]

2. Calculate [tex]\(\theta\)[/tex]:
[tex]\[ \theta = \arctan\left(\frac{y}{x}\right) = \arctan\left(\frac{-\sqrt{2}}{\sqrt{2}}\right) \][/tex]
[tex]\[ \theta = \arctan(-1) \][/tex]

The arctangent of [tex]\(-1\)[/tex] is [tex]\(-\frac{\pi}{4}\)[/tex]. However, this angle is not within the given range [tex]\(0 \leq \theta \leq 2\pi\)[/tex]. Since the point is in the fourth quadrant (positive [tex]\(x\)[/tex], negative [tex]\(y\)[/tex]), we need to add [tex]\(2\pi\)[/tex] to [tex]\(-\frac{\pi}{4}\)[/tex] to get it in the correct range:

[tex]\[ \theta = 2\pi - \frac{\pi}{4} = \frac{8\pi}{4} - \frac{\pi}{4} = \frac{7\pi}{4} \][/tex]

So, the polar coordinates [tex]\((r, \theta)\)[/tex] for the Cartesian coordinates [tex]\((\sqrt{2}, -\sqrt{2})\)[/tex] are:
[tex]\[ \boxed{(2, \frac{7\pi}{4})} \][/tex]

In summary:

1. The integral set-up for the arc length of [tex]\(f(x) = e^x \ln(x)\)[/tex] from [tex]\(x=1\)[/tex] to [tex]\(x=2\)[/tex] is:
[tex]\[ \int_1^2 \sqrt{1 + \left( e^x \ln(x) + \frac{e^x}{x} \right)^2} \, dx \][/tex]

2. The polar coordinates of [tex]\((\sqrt{2}, -\sqrt{2})\)[/tex] are:
[tex]\[ (2, \frac{7\pi}{4}) \][/tex]
Your engagement is important to us. Keep sharing your knowledge and experiences. Let's create a learning environment that is both enjoyable and beneficial. Find clear answers at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.