IDNLearn.com offers a comprehensive solution for all your question and answer needs. Our platform provides detailed and accurate responses from experts, helping you navigate any topic with confidence.

(a) (3 points) Show work and set up the integral to determine the length of the function [tex]$f(x) = e^x \ln(x)$[/tex] between [tex]$x = 1$[/tex] and [tex]$x = 2$[/tex]. Do NOT evaluate.

(b) (3 points) Show work to convert the Cartesian coordinates [tex]$(\sqrt{2}, -\sqrt{2})$[/tex] into polar coordinates [tex]$(r, \theta)$[/tex] with [tex]$0 \leq \theta \leq 2\pi$[/tex] and [tex]$r \ \textgreater \ 0$[/tex].


Sagot :

### Part (a): Setting up the Integral to Determine the Arc Length
To find the length of the function [tex]\(f(x) = e^x \ln(x)\)[/tex] between [tex]\(x = 1\)[/tex] and [tex]\(x = 2\)[/tex], we use the arc length formula for a function [tex]\(y = f(x)\)[/tex].

The arc length [tex]\(L\)[/tex] of a curve [tex]\(y = f(x)\)[/tex] from [tex]\(x = a\)[/tex] to [tex]\(x = b\)[/tex] is given by:
[tex]\[ L = \int_a^b \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx \][/tex]

Here, [tex]\(f(x) = e^x \ln(x)\)[/tex]. First, we need to compute the derivative [tex]\(\frac{dy}{dx}\)[/tex].

1. Calculate the Derivative:
Using the product rule for differentiation:
[tex]\[ f(x) = e^x \ln(x) \Rightarrow \frac{dy}{dx} = \frac{d}{dx}(e^x \ln(x)) \][/tex]
[tex]\[ \frac{dy}{dx} = \ln(x) \cdot \frac{d}{dx}(e^x) + e^x \cdot \frac{d}{dx}(\ln(x)) \][/tex]
[tex]\[ \frac{dy}{dx} = \ln(x) \cdot e^x + e^x \cdot \frac{1}{x} \][/tex]
[tex]\[ \frac{dy}{dx} = e^x \ln(x) + \frac{e^x}{x} \][/tex]

2. Substitute and Set Up the Integral:
Now, plug this derivative into the arc length formula:
[tex]\[ L = \int_1^2 \sqrt{1 + \left( e^x \ln(x) + \frac{e^x}{x} \right)^2} \, dx \][/tex]

So, the integral that represents the length of the function [tex]\(f(x) = e^x \ln(x)\)[/tex] from [tex]\(x = 1\)[/tex] to [tex]\(x = 2\)[/tex] is:
[tex]\[ \boxed{L = \int_1^2 \sqrt{1 + \left( e^x \ln(x) + \frac{e^x}{x} \right)^2} \, dx} \][/tex]

### Part (b): Converting Cartesian Coordinates to Polar Coordinates
To convert the Cartesian coordinates [tex]\((\sqrt{2}, -\sqrt{2})\)[/tex] to polar coordinates [tex]\((r, \theta)\)[/tex], we use the formulas:
[tex]\[ r = \sqrt{x^2 + y^2} \][/tex]
[tex]\[ \theta = \arctan\left(\frac{y}{x}\right) \][/tex]

Given [tex]\(x = \sqrt{2}\)[/tex] and [tex]\(y = -\sqrt{2}\)[/tex]:

1. Calculate [tex]\(r\)[/tex]:
[tex]\[ r = \sqrt{(\sqrt{2})^2 + (-\sqrt{2})^2} \][/tex]
[tex]\[ r = \sqrt{2 + 2} \][/tex]
[tex]\[ r = \sqrt{4} \][/tex]
[tex]\[ r = 2 \][/tex]

2. Calculate [tex]\(\theta\)[/tex]:
[tex]\[ \theta = \arctan\left(\frac{y}{x}\right) = \arctan\left(\frac{-\sqrt{2}}{\sqrt{2}}\right) \][/tex]
[tex]\[ \theta = \arctan(-1) \][/tex]

The arctangent of [tex]\(-1\)[/tex] is [tex]\(-\frac{\pi}{4}\)[/tex]. However, this angle is not within the given range [tex]\(0 \leq \theta \leq 2\pi\)[/tex]. Since the point is in the fourth quadrant (positive [tex]\(x\)[/tex], negative [tex]\(y\)[/tex]), we need to add [tex]\(2\pi\)[/tex] to [tex]\(-\frac{\pi}{4}\)[/tex] to get it in the correct range:

[tex]\[ \theta = 2\pi - \frac{\pi}{4} = \frac{8\pi}{4} - \frac{\pi}{4} = \frac{7\pi}{4} \][/tex]

So, the polar coordinates [tex]\((r, \theta)\)[/tex] for the Cartesian coordinates [tex]\((\sqrt{2}, -\sqrt{2})\)[/tex] are:
[tex]\[ \boxed{(2, \frac{7\pi}{4})} \][/tex]

In summary:

1. The integral set-up for the arc length of [tex]\(f(x) = e^x \ln(x)\)[/tex] from [tex]\(x=1\)[/tex] to [tex]\(x=2\)[/tex] is:
[tex]\[ \int_1^2 \sqrt{1 + \left( e^x \ln(x) + \frac{e^x}{x} \right)^2} \, dx \][/tex]

2. The polar coordinates of [tex]\((\sqrt{2}, -\sqrt{2})\)[/tex] are:
[tex]\[ (2, \frac{7\pi}{4}) \][/tex]
Your engagement is important to us. Keep sharing your knowledge and experiences. Let's create a learning environment that is both enjoyable and beneficial. Thank you for visiting IDNLearn.com. We’re here to provide accurate and reliable answers, so visit us again soon.