Find expert answers and community insights on IDNLearn.com. Our experts are ready to provide in-depth answers and practical solutions to any questions you may have.
Sagot :
Sure, let's go step-by-step to solve this problem.
### Step 1: Understanding the Problem
We have:
- Initial volume, [tex]\( V_1 = 2.30 \)[/tex] liters
- Final volume, [tex]\( V_2 = 6.50 \)[/tex] liters
- Initial temperature, [tex]\( T_1 = 40^\circ \text{C} \)[/tex]
We need to find the final temperature, [tex]\( T_2 \)[/tex].
### Step 2: Convert Initial Temperature to Kelvin
First, we convert the initial temperature from Celsius to Kelvin because gas law calculations typically use Kelvin.
[tex]\[ T_1(K) = T_1(°C) + 273.15 \][/tex]
[tex]\[ T_1(K) = 40 + 273.15 \][/tex]
[tex]\[ T_1(K) = 313.15 \, \text{K} \][/tex]
### Step 3: Apply Charles's Law
Charles's Law states that for a given mass of gas at constant pressure, the volume is directly proportional to its temperature (in Kelvin).
Mathematically, it can be written as:
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
We need to find [tex]\( T_2 \)[/tex]. Rearranging the formula to solve for [tex]\( T_2 \)[/tex]:
[tex]\[ T_2 = \frac{V_2 \times T_1}{V_1} \][/tex]
### Step 4: Calculate the Final Temperature in Kelvin
Substitute the known values into the equation:
[tex]\[ T_2 = \frac{6.50 \, \text{L} \times 313.15 \, \text{K}}{2.30 \, \text{L}} \][/tex]
[tex]\[ T_2 = \frac{2035.475}{2.30} \][/tex]
[tex]\[ T_2 = 884.99 \, \text{K} \][/tex]
### Step 5: Convert the Final Temperature to Celsius
To convert the final temperature back to Celsius:
[tex]\[ T_2(°C) = T_2(K) - 273.15 \][/tex]
[tex]\[ T_2(°C) = 884.99 - 273.15 \][/tex]
[tex]\[ T_2(°C) = 611.84 \][/tex]
### Final Answer
The temperature should be raised to [tex]\( 611.84^\circ \text{C} \)[/tex] to occupy a volume of [tex]\( 6.50 \)[/tex] liters.
### Step 1: Understanding the Problem
We have:
- Initial volume, [tex]\( V_1 = 2.30 \)[/tex] liters
- Final volume, [tex]\( V_2 = 6.50 \)[/tex] liters
- Initial temperature, [tex]\( T_1 = 40^\circ \text{C} \)[/tex]
We need to find the final temperature, [tex]\( T_2 \)[/tex].
### Step 2: Convert Initial Temperature to Kelvin
First, we convert the initial temperature from Celsius to Kelvin because gas law calculations typically use Kelvin.
[tex]\[ T_1(K) = T_1(°C) + 273.15 \][/tex]
[tex]\[ T_1(K) = 40 + 273.15 \][/tex]
[tex]\[ T_1(K) = 313.15 \, \text{K} \][/tex]
### Step 3: Apply Charles's Law
Charles's Law states that for a given mass of gas at constant pressure, the volume is directly proportional to its temperature (in Kelvin).
Mathematically, it can be written as:
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
We need to find [tex]\( T_2 \)[/tex]. Rearranging the formula to solve for [tex]\( T_2 \)[/tex]:
[tex]\[ T_2 = \frac{V_2 \times T_1}{V_1} \][/tex]
### Step 4: Calculate the Final Temperature in Kelvin
Substitute the known values into the equation:
[tex]\[ T_2 = \frac{6.50 \, \text{L} \times 313.15 \, \text{K}}{2.30 \, \text{L}} \][/tex]
[tex]\[ T_2 = \frac{2035.475}{2.30} \][/tex]
[tex]\[ T_2 = 884.99 \, \text{K} \][/tex]
### Step 5: Convert the Final Temperature to Celsius
To convert the final temperature back to Celsius:
[tex]\[ T_2(°C) = T_2(K) - 273.15 \][/tex]
[tex]\[ T_2(°C) = 884.99 - 273.15 \][/tex]
[tex]\[ T_2(°C) = 611.84 \][/tex]
### Final Answer
The temperature should be raised to [tex]\( 611.84^\circ \text{C} \)[/tex] to occupy a volume of [tex]\( 6.50 \)[/tex] liters.
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for visiting IDNLearn.com. We’re here to provide dependable answers, so visit us again soon.