Ask questions, share knowledge, and connect with a vibrant community on IDNLearn.com. Get timely and accurate answers to your questions from our dedicated community of experts who are here to help you.
Sagot :
To determine whether the function [tex]\( F \)[/tex] is a linear transformation, we must check whether [tex]\( F \)[/tex] satisfies the two main properties of linearity: preservation of addition and preservation of scalar multiplication.
Given: [tex]\( F: \mathbb{R}^2 \rightarrow \mathbb{R} \)[/tex] defined by [tex]\( F\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = |x_1| + |x_2| \)[/tex]:
### Preservation of Addition
A function [tex]\( F \)[/tex] preserves addition if:
[tex]\[ F(\mathbf{u} + \mathbf{v}) = F(\mathbf{u}) + F(\mathbf{v}) \][/tex]
Let's take two arbitrary vectors [tex]\(\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \)[/tex] and [tex]\(\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \)[/tex] in [tex]\(\mathbb{R}^2\)[/tex].
First, compute [tex]\( F(\mathbf{u} + \mathbf{v}) \)[/tex]:
[tex]\[ \mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix} \][/tex]
[tex]\[ F(\mathbf{u} + \mathbf{v}) = F\left(\begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix}\right) = |u_1 + v_1| + |u_2 + v_2| \][/tex]
Now, compute [tex]\( F(\mathbf{u}) + F(\mathbf{v}) \)[/tex]:
[tex]\[ F(\mathbf{u}) = F\left(\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}\right) = |u_1| + |u_2| \][/tex]
[tex]\[ F(\mathbf{v}) = F\left(\begin{bmatrix} v_1 \\ v_2 \end{bmatrix}\right) = |v_1| + |v_2| \][/tex]
[tex]\[ F(\mathbf{u}) + F(\mathbf{v}) = (|u_1| + |u_2|) + (|v_1| + |v_2|) = |u_1| + |u_2| + |v_1| + |v_2| \][/tex]
For [tex]\( F \)[/tex] to be a linear transformation, the following must hold:
[tex]\[ |u_1 + v_1| + |u_2 + v_2| = |u_1| + |u_2| + |v_1| + |v_2| \][/tex]
However, this is generally false because the absolute values of sums do not necessarily equal the sums of absolute values; for example, if [tex]\( u_1 = 1 \)[/tex] and [tex]\( v_1 = -1\)[/tex]:
[tex]\[ |1 + (-1)| = |0| = 0 \][/tex]
but,
[tex]\[ |1| + |-1| = 1 + 1 = 2 \][/tex]
This example shows that [tex]\( |u_1 + v_1| \neq |u_1| + |v_1| \)[/tex]. Thus, [tex]\( F \)[/tex] does not preserve addition.
### Preservation of Scalar Multiplication
A function [tex]\( F \)[/tex] preserves scalar multiplication if:
[tex]\[ F(c\mathbf{u}) = cF(\mathbf{u}) \][/tex]
For a scalar [tex]\( c \)[/tex] and a vector [tex]\(\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \)[/tex]:
First, compute [tex]\( F(c\mathbf{u}) \)[/tex]:
[tex]\[ c\mathbf{u} = c \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} cu_1 \\ cu_2 \end{bmatrix} \][/tex]
[tex]\[ F(c\mathbf{u}) = F\left(\begin{bmatrix} cu_1 \\ cu_2 \end{bmatrix}\right) = |cu_1| + |cu_2| \][/tex]
Now, compute [tex]\( cF(\mathbf{u}) \)[/tex]:
[tex]\[ cF(\mathbf{u}) = c (|u_1| + |u_2|) = c|u_1| + c|u_2| \][/tex]
For [tex]\( F \)[/tex] to be a linear transformation, the following must hold:
[tex]\[ |cu_1| + |cu_2| = c|u_1| + c|u_2| \][/tex]
This holds when [tex]\( c \)[/tex] is positive. However, if [tex]\( c \)[/tex] is negative, [tex]\( c|u_1| + c|u_2| \)[/tex] will be negative while [tex]\( |c u_1| + |c u_2| \)[/tex] remains positive, which shows that the scalar multiplication property is not generally satisfied for negative scalars.
Given that [tex]\( F \)[/tex] does not preserve both addition and scalar multiplication generally, we can conclude that:
[tex]\[ F \text{ is not a linear transformation.} \][/tex]
Thus, the function [tex]\( F \)[/tex] is not a linear transformation.
Given: [tex]\( F: \mathbb{R}^2 \rightarrow \mathbb{R} \)[/tex] defined by [tex]\( F\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = |x_1| + |x_2| \)[/tex]:
### Preservation of Addition
A function [tex]\( F \)[/tex] preserves addition if:
[tex]\[ F(\mathbf{u} + \mathbf{v}) = F(\mathbf{u}) + F(\mathbf{v}) \][/tex]
Let's take two arbitrary vectors [tex]\(\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \)[/tex] and [tex]\(\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \)[/tex] in [tex]\(\mathbb{R}^2\)[/tex].
First, compute [tex]\( F(\mathbf{u} + \mathbf{v}) \)[/tex]:
[tex]\[ \mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix} \][/tex]
[tex]\[ F(\mathbf{u} + \mathbf{v}) = F\left(\begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix}\right) = |u_1 + v_1| + |u_2 + v_2| \][/tex]
Now, compute [tex]\( F(\mathbf{u}) + F(\mathbf{v}) \)[/tex]:
[tex]\[ F(\mathbf{u}) = F\left(\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}\right) = |u_1| + |u_2| \][/tex]
[tex]\[ F(\mathbf{v}) = F\left(\begin{bmatrix} v_1 \\ v_2 \end{bmatrix}\right) = |v_1| + |v_2| \][/tex]
[tex]\[ F(\mathbf{u}) + F(\mathbf{v}) = (|u_1| + |u_2|) + (|v_1| + |v_2|) = |u_1| + |u_2| + |v_1| + |v_2| \][/tex]
For [tex]\( F \)[/tex] to be a linear transformation, the following must hold:
[tex]\[ |u_1 + v_1| + |u_2 + v_2| = |u_1| + |u_2| + |v_1| + |v_2| \][/tex]
However, this is generally false because the absolute values of sums do not necessarily equal the sums of absolute values; for example, if [tex]\( u_1 = 1 \)[/tex] and [tex]\( v_1 = -1\)[/tex]:
[tex]\[ |1 + (-1)| = |0| = 0 \][/tex]
but,
[tex]\[ |1| + |-1| = 1 + 1 = 2 \][/tex]
This example shows that [tex]\( |u_1 + v_1| \neq |u_1| + |v_1| \)[/tex]. Thus, [tex]\( F \)[/tex] does not preserve addition.
### Preservation of Scalar Multiplication
A function [tex]\( F \)[/tex] preserves scalar multiplication if:
[tex]\[ F(c\mathbf{u}) = cF(\mathbf{u}) \][/tex]
For a scalar [tex]\( c \)[/tex] and a vector [tex]\(\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \)[/tex]:
First, compute [tex]\( F(c\mathbf{u}) \)[/tex]:
[tex]\[ c\mathbf{u} = c \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} cu_1 \\ cu_2 \end{bmatrix} \][/tex]
[tex]\[ F(c\mathbf{u}) = F\left(\begin{bmatrix} cu_1 \\ cu_2 \end{bmatrix}\right) = |cu_1| + |cu_2| \][/tex]
Now, compute [tex]\( cF(\mathbf{u}) \)[/tex]:
[tex]\[ cF(\mathbf{u}) = c (|u_1| + |u_2|) = c|u_1| + c|u_2| \][/tex]
For [tex]\( F \)[/tex] to be a linear transformation, the following must hold:
[tex]\[ |cu_1| + |cu_2| = c|u_1| + c|u_2| \][/tex]
This holds when [tex]\( c \)[/tex] is positive. However, if [tex]\( c \)[/tex] is negative, [tex]\( c|u_1| + c|u_2| \)[/tex] will be negative while [tex]\( |c u_1| + |c u_2| \)[/tex] remains positive, which shows that the scalar multiplication property is not generally satisfied for negative scalars.
Given that [tex]\( F \)[/tex] does not preserve both addition and scalar multiplication generally, we can conclude that:
[tex]\[ F \text{ is not a linear transformation.} \][/tex]
Thus, the function [tex]\( F \)[/tex] is not a linear transformation.
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for visiting IDNLearn.com. For reliable answers to all your questions, please visit us again soon.