From tech troubles to travel tips, IDNLearn.com has answers to all your questions. Ask your questions and receive reliable and comprehensive answers from our dedicated community of professionals.
Sagot :
To determine whether the function [tex]\( F \)[/tex] is a linear transformation, we must check whether [tex]\( F \)[/tex] satisfies the two main properties of linearity: preservation of addition and preservation of scalar multiplication.
Given: [tex]\( F: \mathbb{R}^2 \rightarrow \mathbb{R} \)[/tex] defined by [tex]\( F\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = |x_1| + |x_2| \)[/tex]:
### Preservation of Addition
A function [tex]\( F \)[/tex] preserves addition if:
[tex]\[ F(\mathbf{u} + \mathbf{v}) = F(\mathbf{u}) + F(\mathbf{v}) \][/tex]
Let's take two arbitrary vectors [tex]\(\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \)[/tex] and [tex]\(\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \)[/tex] in [tex]\(\mathbb{R}^2\)[/tex].
First, compute [tex]\( F(\mathbf{u} + \mathbf{v}) \)[/tex]:
[tex]\[ \mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix} \][/tex]
[tex]\[ F(\mathbf{u} + \mathbf{v}) = F\left(\begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix}\right) = |u_1 + v_1| + |u_2 + v_2| \][/tex]
Now, compute [tex]\( F(\mathbf{u}) + F(\mathbf{v}) \)[/tex]:
[tex]\[ F(\mathbf{u}) = F\left(\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}\right) = |u_1| + |u_2| \][/tex]
[tex]\[ F(\mathbf{v}) = F\left(\begin{bmatrix} v_1 \\ v_2 \end{bmatrix}\right) = |v_1| + |v_2| \][/tex]
[tex]\[ F(\mathbf{u}) + F(\mathbf{v}) = (|u_1| + |u_2|) + (|v_1| + |v_2|) = |u_1| + |u_2| + |v_1| + |v_2| \][/tex]
For [tex]\( F \)[/tex] to be a linear transformation, the following must hold:
[tex]\[ |u_1 + v_1| + |u_2 + v_2| = |u_1| + |u_2| + |v_1| + |v_2| \][/tex]
However, this is generally false because the absolute values of sums do not necessarily equal the sums of absolute values; for example, if [tex]\( u_1 = 1 \)[/tex] and [tex]\( v_1 = -1\)[/tex]:
[tex]\[ |1 + (-1)| = |0| = 0 \][/tex]
but,
[tex]\[ |1| + |-1| = 1 + 1 = 2 \][/tex]
This example shows that [tex]\( |u_1 + v_1| \neq |u_1| + |v_1| \)[/tex]. Thus, [tex]\( F \)[/tex] does not preserve addition.
### Preservation of Scalar Multiplication
A function [tex]\( F \)[/tex] preserves scalar multiplication if:
[tex]\[ F(c\mathbf{u}) = cF(\mathbf{u}) \][/tex]
For a scalar [tex]\( c \)[/tex] and a vector [tex]\(\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \)[/tex]:
First, compute [tex]\( F(c\mathbf{u}) \)[/tex]:
[tex]\[ c\mathbf{u} = c \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} cu_1 \\ cu_2 \end{bmatrix} \][/tex]
[tex]\[ F(c\mathbf{u}) = F\left(\begin{bmatrix} cu_1 \\ cu_2 \end{bmatrix}\right) = |cu_1| + |cu_2| \][/tex]
Now, compute [tex]\( cF(\mathbf{u}) \)[/tex]:
[tex]\[ cF(\mathbf{u}) = c (|u_1| + |u_2|) = c|u_1| + c|u_2| \][/tex]
For [tex]\( F \)[/tex] to be a linear transformation, the following must hold:
[tex]\[ |cu_1| + |cu_2| = c|u_1| + c|u_2| \][/tex]
This holds when [tex]\( c \)[/tex] is positive. However, if [tex]\( c \)[/tex] is negative, [tex]\( c|u_1| + c|u_2| \)[/tex] will be negative while [tex]\( |c u_1| + |c u_2| \)[/tex] remains positive, which shows that the scalar multiplication property is not generally satisfied for negative scalars.
Given that [tex]\( F \)[/tex] does not preserve both addition and scalar multiplication generally, we can conclude that:
[tex]\[ F \text{ is not a linear transformation.} \][/tex]
Thus, the function [tex]\( F \)[/tex] is not a linear transformation.
Given: [tex]\( F: \mathbb{R}^2 \rightarrow \mathbb{R} \)[/tex] defined by [tex]\( F\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = |x_1| + |x_2| \)[/tex]:
### Preservation of Addition
A function [tex]\( F \)[/tex] preserves addition if:
[tex]\[ F(\mathbf{u} + \mathbf{v}) = F(\mathbf{u}) + F(\mathbf{v}) \][/tex]
Let's take two arbitrary vectors [tex]\(\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \)[/tex] and [tex]\(\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \)[/tex] in [tex]\(\mathbb{R}^2\)[/tex].
First, compute [tex]\( F(\mathbf{u} + \mathbf{v}) \)[/tex]:
[tex]\[ \mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix} \][/tex]
[tex]\[ F(\mathbf{u} + \mathbf{v}) = F\left(\begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix}\right) = |u_1 + v_1| + |u_2 + v_2| \][/tex]
Now, compute [tex]\( F(\mathbf{u}) + F(\mathbf{v}) \)[/tex]:
[tex]\[ F(\mathbf{u}) = F\left(\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}\right) = |u_1| + |u_2| \][/tex]
[tex]\[ F(\mathbf{v}) = F\left(\begin{bmatrix} v_1 \\ v_2 \end{bmatrix}\right) = |v_1| + |v_2| \][/tex]
[tex]\[ F(\mathbf{u}) + F(\mathbf{v}) = (|u_1| + |u_2|) + (|v_1| + |v_2|) = |u_1| + |u_2| + |v_1| + |v_2| \][/tex]
For [tex]\( F \)[/tex] to be a linear transformation, the following must hold:
[tex]\[ |u_1 + v_1| + |u_2 + v_2| = |u_1| + |u_2| + |v_1| + |v_2| \][/tex]
However, this is generally false because the absolute values of sums do not necessarily equal the sums of absolute values; for example, if [tex]\( u_1 = 1 \)[/tex] and [tex]\( v_1 = -1\)[/tex]:
[tex]\[ |1 + (-1)| = |0| = 0 \][/tex]
but,
[tex]\[ |1| + |-1| = 1 + 1 = 2 \][/tex]
This example shows that [tex]\( |u_1 + v_1| \neq |u_1| + |v_1| \)[/tex]. Thus, [tex]\( F \)[/tex] does not preserve addition.
### Preservation of Scalar Multiplication
A function [tex]\( F \)[/tex] preserves scalar multiplication if:
[tex]\[ F(c\mathbf{u}) = cF(\mathbf{u}) \][/tex]
For a scalar [tex]\( c \)[/tex] and a vector [tex]\(\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \)[/tex]:
First, compute [tex]\( F(c\mathbf{u}) \)[/tex]:
[tex]\[ c\mathbf{u} = c \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} cu_1 \\ cu_2 \end{bmatrix} \][/tex]
[tex]\[ F(c\mathbf{u}) = F\left(\begin{bmatrix} cu_1 \\ cu_2 \end{bmatrix}\right) = |cu_1| + |cu_2| \][/tex]
Now, compute [tex]\( cF(\mathbf{u}) \)[/tex]:
[tex]\[ cF(\mathbf{u}) = c (|u_1| + |u_2|) = c|u_1| + c|u_2| \][/tex]
For [tex]\( F \)[/tex] to be a linear transformation, the following must hold:
[tex]\[ |cu_1| + |cu_2| = c|u_1| + c|u_2| \][/tex]
This holds when [tex]\( c \)[/tex] is positive. However, if [tex]\( c \)[/tex] is negative, [tex]\( c|u_1| + c|u_2| \)[/tex] will be negative while [tex]\( |c u_1| + |c u_2| \)[/tex] remains positive, which shows that the scalar multiplication property is not generally satisfied for negative scalars.
Given that [tex]\( F \)[/tex] does not preserve both addition and scalar multiplication generally, we can conclude that:
[tex]\[ F \text{ is not a linear transformation.} \][/tex]
Thus, the function [tex]\( F \)[/tex] is not a linear transformation.
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is your reliable source for answers. We appreciate your visit and look forward to assisting you again soon.