Explore a vast range of topics and get informed answers at IDNLearn.com. Our experts provide timely, comprehensive responses to ensure you have the information you need.
Sagot :
To find the frequency and energy of light based on its wavelength, we can use the following key physics formulas:
1. The speed of light formula to find frequency ([tex]\( f \)[/tex]):
[tex]\[ f = \frac{c}{\lambda} \][/tex]
where:
- [tex]\( c \)[/tex] is the speed of light ([tex]\( 3 \times 10^8 \)[/tex] meters per second),
- [tex]\( \lambda \)[/tex] is the wavelength of the light.
2. Planck's equation to find energy ([tex]\( E \)[/tex]):
[tex]\[ E = h \times f \][/tex]
where:
- [tex]\( h \)[/tex] is Planck's constant ([tex]\( 6.626 \times 10^{-34} \)[/tex] joule-seconds),
- [tex]\( f \)[/tex] is the frequency.
Let's calculate the frequency and energy for both types of light:
### Wavelength Conversion:
- Wavelength of red light ([tex]\( \lambda_{\text{red}} \)[/tex]): [tex]\( 750 \)[/tex] nm
[tex]\[ \lambda_{\text{red}} = 750 \times 10^{-9}\ \text{m} = 7.50 \times 10^{-7}\ \text{m} \][/tex]
- Wavelength of violet light ([tex]\( \lambda_{\text{violet}} \)[/tex]): [tex]\( 400 \)[/tex] nm
[tex]\[ \lambda_{\text{violet}} = 400 \times 10^{-9}\ \text{m} = 4.00 \times 10^{-7}\ \text{m} \][/tex]
### Frequency Calculation:
- Frequency of red light ([tex]\( f_{\text{red}} \)[/tex]):
[tex]\[ f_{\text{red}} = \frac{c}{\lambda_{\text{red}}} = \frac{3 \times 10^8\ \text{m/s}}{7.50 \times 10^{-7}\ \text{m}} = 4.00 \times 10^{14}\ \text{Hz} \][/tex]
- Frequency of violet light ([tex]\( f_{\text{violet}} \)[/tex]):
[tex]\[ f_{\text{violet}} = \frac{c}{\lambda_{\text{violet}}} = \frac{3 \times 10^8\ \text{m/s}}{4.00 \times 10^{-7}\ \text{m}} = 7.50 \times 10^{14}\ \text{Hz} \][/tex]
### Energy Calculation:
- Energy of red light ([tex]\( E_{\text{red}} \)[/tex]):
[tex]\[ E_{\text{red}} = h \times f_{\text{red}} = 6.626 \times 10^{-34}\ \text{J} \cdot \text{s} \times 4.00 \times 10^{14}\ \text{Hz} = 2.6504 \times 10^{-19}\ \text{J} \][/tex]
- Energy of violet light ([tex]\( E_{\text{violet}} \)[/tex]):
[tex]\[ E_{\text{violet}} = h \times f_{\text{violet}} = 6.626 \times 10^{-34}\ \text{J} \cdot \text{s} \times 7.50 \times 10^{14}\ \text{Hz} = 4.9695 \times 10^{-19}\ \text{J} \][/tex]
### Summary:
- Red light of 750 nm:
- Frequency: [tex]\( 4.00 \times 10^{14} \)[/tex] Hz
- Energy: [tex]\( 2.6504 \times 10^{-19} \)[/tex] J
- Violet light of 400 nm:
- Frequency: [tex]\( 7.50 \times 10^{14} \)[/tex] Hz
- Energy: [tex]\( 4.9695 \times 10^{-19} \)[/tex] J
1. The speed of light formula to find frequency ([tex]\( f \)[/tex]):
[tex]\[ f = \frac{c}{\lambda} \][/tex]
where:
- [tex]\( c \)[/tex] is the speed of light ([tex]\( 3 \times 10^8 \)[/tex] meters per second),
- [tex]\( \lambda \)[/tex] is the wavelength of the light.
2. Planck's equation to find energy ([tex]\( E \)[/tex]):
[tex]\[ E = h \times f \][/tex]
where:
- [tex]\( h \)[/tex] is Planck's constant ([tex]\( 6.626 \times 10^{-34} \)[/tex] joule-seconds),
- [tex]\( f \)[/tex] is the frequency.
Let's calculate the frequency and energy for both types of light:
### Wavelength Conversion:
- Wavelength of red light ([tex]\( \lambda_{\text{red}} \)[/tex]): [tex]\( 750 \)[/tex] nm
[tex]\[ \lambda_{\text{red}} = 750 \times 10^{-9}\ \text{m} = 7.50 \times 10^{-7}\ \text{m} \][/tex]
- Wavelength of violet light ([tex]\( \lambda_{\text{violet}} \)[/tex]): [tex]\( 400 \)[/tex] nm
[tex]\[ \lambda_{\text{violet}} = 400 \times 10^{-9}\ \text{m} = 4.00 \times 10^{-7}\ \text{m} \][/tex]
### Frequency Calculation:
- Frequency of red light ([tex]\( f_{\text{red}} \)[/tex]):
[tex]\[ f_{\text{red}} = \frac{c}{\lambda_{\text{red}}} = \frac{3 \times 10^8\ \text{m/s}}{7.50 \times 10^{-7}\ \text{m}} = 4.00 \times 10^{14}\ \text{Hz} \][/tex]
- Frequency of violet light ([tex]\( f_{\text{violet}} \)[/tex]):
[tex]\[ f_{\text{violet}} = \frac{c}{\lambda_{\text{violet}}} = \frac{3 \times 10^8\ \text{m/s}}{4.00 \times 10^{-7}\ \text{m}} = 7.50 \times 10^{14}\ \text{Hz} \][/tex]
### Energy Calculation:
- Energy of red light ([tex]\( E_{\text{red}} \)[/tex]):
[tex]\[ E_{\text{red}} = h \times f_{\text{red}} = 6.626 \times 10^{-34}\ \text{J} \cdot \text{s} \times 4.00 \times 10^{14}\ \text{Hz} = 2.6504 \times 10^{-19}\ \text{J} \][/tex]
- Energy of violet light ([tex]\( E_{\text{violet}} \)[/tex]):
[tex]\[ E_{\text{violet}} = h \times f_{\text{violet}} = 6.626 \times 10^{-34}\ \text{J} \cdot \text{s} \times 7.50 \times 10^{14}\ \text{Hz} = 4.9695 \times 10^{-19}\ \text{J} \][/tex]
### Summary:
- Red light of 750 nm:
- Frequency: [tex]\( 4.00 \times 10^{14} \)[/tex] Hz
- Energy: [tex]\( 2.6504 \times 10^{-19} \)[/tex] J
- Violet light of 400 nm:
- Frequency: [tex]\( 7.50 \times 10^{14} \)[/tex] Hz
- Energy: [tex]\( 4.9695 \times 10^{-19} \)[/tex] J
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. For trustworthy answers, visit IDNLearn.com. Thank you for your visit, and see you next time for more reliable solutions.