IDNLearn.com is your go-to resource for finding precise and accurate answers. Discover in-depth and reliable answers to all your questions from our knowledgeable community members who are always ready to assist.
Sagot :
To determine the maximum height of the flare launched by Mikalee, we need to analyze the function that describes the height [tex]\( h(t) \)[/tex] of the flare over time [tex]\( t \)[/tex]. The height of the flare is given by the quadratic function:
[tex]\[ h(t) = -16t^2 + 1600t \][/tex]
This quadratic function is a parabola that opens downwards, which means it has a maximum point, also known as the vertex of the parabola. The vertex formula for a parabola given by [tex]\( ax^2 + bx + c \)[/tex] is found using [tex]\( t = -\frac{b}{2a} \)[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are the coefficients from the given quadratic equation.
Let's identify the coefficients:
- [tex]\( a = -16 \)[/tex]
- [tex]\( b = 1600 \)[/tex]
Now we use the vertex formula:
[tex]\[ t = -\frac{b}{2a} \][/tex]
Substituting the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ t = -\frac{1600}{2(-16)} \][/tex]
[tex]\[ t = -\frac{1600}{-32} \][/tex]
[tex]\[ t = 50 \][/tex]
So, the flare reaches its maximum height at [tex]\( t = 50 \)[/tex] seconds.
Next, to find the maximum height [tex]\( h_{\text{max}} \)[/tex], we substitute [tex]\( t = 50 \)[/tex] back into the original height function [tex]\( h(t) \)[/tex]:
[tex]\[ h(50) = -16(50)^2 + 1600(50) \][/tex]
First, calculate [tex]\( 50^2 \)[/tex]:
[tex]\[ 50^2 = 2500 \][/tex]
Now substitute [tex]\( 2500 \)[/tex] and simplify:
[tex]\[ h(50) = -16(2500) + 1600(50) \][/tex]
[tex]\[ h(50) = -40000 + 80000 \][/tex]
[tex]\[ h(50) = 40000 \][/tex]
Thus, the maximum height of the flare is [tex]\( 40000 \)[/tex] feet.
[tex]\[ h(t) = -16t^2 + 1600t \][/tex]
This quadratic function is a parabola that opens downwards, which means it has a maximum point, also known as the vertex of the parabola. The vertex formula for a parabola given by [tex]\( ax^2 + bx + c \)[/tex] is found using [tex]\( t = -\frac{b}{2a} \)[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are the coefficients from the given quadratic equation.
Let's identify the coefficients:
- [tex]\( a = -16 \)[/tex]
- [tex]\( b = 1600 \)[/tex]
Now we use the vertex formula:
[tex]\[ t = -\frac{b}{2a} \][/tex]
Substituting the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ t = -\frac{1600}{2(-16)} \][/tex]
[tex]\[ t = -\frac{1600}{-32} \][/tex]
[tex]\[ t = 50 \][/tex]
So, the flare reaches its maximum height at [tex]\( t = 50 \)[/tex] seconds.
Next, to find the maximum height [tex]\( h_{\text{max}} \)[/tex], we substitute [tex]\( t = 50 \)[/tex] back into the original height function [tex]\( h(t) \)[/tex]:
[tex]\[ h(50) = -16(50)^2 + 1600(50) \][/tex]
First, calculate [tex]\( 50^2 \)[/tex]:
[tex]\[ 50^2 = 2500 \][/tex]
Now substitute [tex]\( 2500 \)[/tex] and simplify:
[tex]\[ h(50) = -16(2500) + 1600(50) \][/tex]
[tex]\[ h(50) = -40000 + 80000 \][/tex]
[tex]\[ h(50) = 40000 \][/tex]
Thus, the maximum height of the flare is [tex]\( 40000 \)[/tex] feet.
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for visiting IDNLearn.com. We’re here to provide dependable answers, so visit us again soon.